Micromechatronics, Inc. (MMech)

www.mmech.com - Ph: 814-861-5688

PDm200 Miniature High Voltage Amplifier

Piezoelectric Drivers

pdm200b_med

pdf-icon_smPDm200 Specifications

keypad_sm Calculate Power Bandwidth

Specifications:

PDm200 Specifications
 Power Supply +/-12 V to +34 V
 Max. Unipolar Output -30 V to 200 V
 Max. Bipolar Output +/-200 V
 Peak Output Current 300 mA
 RMS Output Current 120 mA (+/-100 V Output)
 Power Bandwidth 63 kHz (100 Vp-p)
 Signal Bandwidth 200 kHz
 Slew Rate 20 V/us
 Dimensions 71 x 38 mm
 Weight 50 g
 Gain 20 V/V
 Input Impedance 200 kOhm
 Input Offset +/- 10 mV
 Load Any
 Overload Protection Thermal and current
 Noise 1 mV RMS (1uF Load)
 Environment 0 to 60 C (32 to 140 F)
 Quiescent Current 100 mA (7.5 mA in Shutdown)

Features

The PDm200 is a high-performance power supply and linear amplifier module for driving piezoelectric actuators and other loads. The output voltage range can be switched between bipolar or unipolar modes with a range of 100V, 150V, or 200V. In the unipolar mode, the negative output range is fixed at -30V for use with stack actuators. The PDm200 can drive stack actuators; standard piezoelectric actuators; two wire benders; and three-wire piezoelectric benders requiring a bias voltage.

The PDm200 is suited to a wide range of applications including: Electro-optics, ultrasound, vibration control, nanopositioning systems, and piezoelectric motors. There is protected against current overload and excessive temperature. It can be mounted to a base with four M2.5 screws. The PCB mounting version is supplied with headers for direct mounting onto a host motherboard.

Compatible Actuators

Compatible Actuators
Stack Actuators 60V, 100V, 120V, 150V, 200V
Plates and Tubes up to +/- 200V
Two Wire Benders up to +/- 200V
Three Wire Benders 0 to 200V with 200 V bias

Connection Diagram

PDm200B_connections_lg

Operation

A power converter generates a unipolar or bipolar supply. The output voltage range is controlled by the voltage selector jumpers. The amplifier has a gain of 20 and an input voltage range of +/-10 V. The load is connected directly to the high-speed output (V1) or through a filter (V2) which reduces the noise and bandwidth. In most applications, the V2 output is recommended.

A variable bias supply is also available for piezoelectric bender applications. The default bias voltage is 200 V but lower voltages can be achieved by adding a resistor.

PDm200B operation LG

Block Diagram

 Example Applications

PDm200B_applications_lg

Application Circuits

Configuration

The PDm200B is configurable to suit a wide range of power supply and output voltage ranges. The output voltage range is selected by two jumpers marked L1 and L2, as shown below. Each jumper has four possible positions marked by the letters A to D and E to H.

PDm200B jumpers lg

Voltage Configuration Jumper Locations

In the unipolar output mode, the negative output range is fixed at -30 V and the jumper L2 is always in the ‘E’ position. The correct position for the L1 jumper is listed below for different power supply voltages.

Output VoltagePower Supply Voltage
Max Min +/-12 to +/-14V +/-15 to +/-17V +24V* to 30V +30V* to 34V
200V -30V   D   D
150V -30V D C D C
120V -30V C B C B
100V -30V B A B A

Unipolar Jumper Configuration

*With a single supply, the negative output voltage range is reduced from -30 V to -20 V.

 

In bipolar output mode, the correct positions for the L1 and L2 jumpers are listed below. In the +/-200 V mode, the low-noise output (V2) is recommended. See "Stability" for more details.

Output VoltagePower Supply Voltage
max Min +/-12 to +/-14V +/-15 to +/-17V +24V to 30V +30V to 34V
200V -200V   D,H   D,H
150V -150V D,H C,G D,H C,G
100V -100V B,F A,F B,F A,F

Bipolar Jumper Configuration

The PDm200B can also be used in lower voltage applications; however, the output current may be reduced. The corresponding low-voltage jumper positions are listed below

Output VoltagePower Supply Voltage
max Min +/-12V to +/-14V +12V to +15V
80V -30V A,E  
80V 0V   D,E
60V -60V   D,H

Low Voltage Jumper Configuration

Output Current

The peak output current is approximately 300 mA and the maximum average DC output current is approximately.

Peak_current_form

where VS is the differential supply voltage e.g. 30V, and Vout is the differential output voltage range e.g. 400V. The average DC current is the average current flowing in either the positive or negative direction. For a sine wave, the average DC current is related to the RMS current by

RMS_current_form

The PDm200B calculator can be used to estimate the maximum input and output current for a given supply voltage and output voltage range. Some common values are tabulated below.

Output VoltageRMS CurrentAverage Current
max Min    
150V -30V 144 mA 65 mA
200V -30V 108 mA 49 mA
100V -100V 128 mA 58 mA
200V -200V 53 mA 24 mA

RMS and Average Output Current for a +/-15 V Supply

Supply Current

The maximum supply current is 0.5 A at full load. For a partial load, the supply current is     Max_Current_Part_load

where the required input power is   Input_Power_part_load

where Vout is the differential output voltage range and Iav is the average output current.

Power Bandwidth

The calculator accessed below plots the maixmum peak-to-peak output voltage for a capacitive load versus the frequency and voltage range.

keypad_sm Calculate Power Bandwidth

With a capacitive load, the power bandwidth is limited by the average output current. The maximum frequency sine wave is

MAX Freq Sine Formula

The power bandwidth is primarily related to the average current limit as described above. However, when operating at full range, e.g. +/-200 V, with the minimum supply voltage, e.g. +/-15 V, the power supply droop can distort the top of a signal. This effect can be reduced by increasing the supply voltage.

Signal Bandwidth

With a load capacitance greater than 100 nF, the small signal bandwidth is Sig_bandwidth_LC_form

With a load capacitance less than 100 nF, the small signal bandwidth is approximately 200 kHz. The bandwidth of the low noise output (V2) is approximately 5% of the high speed output, that is,  Sig_bandwidth_LN_form

The small signal bandwidth for a range of capacitive loads is listed in the table below.

Load CapacitanceHigh Speed BandwidthLow Noise Bandwidth
10 nF 200 kHz 49 kHz
30 nF 200 kHz 20 kHz
100 nF 158 kHz 6.6 kHz
300 nF 52 kHz 2.3 kHz
1 uF 15 kHz 690 kHz
3 uF 5.2 kHz 230 kHz
10 uF 1.5 kHz 69 Hz
30 uF 530 Hz 23 Hz

Small signal Bandwidth

Noise

The output of the PDm200B contains a small amount of switching noise from the boost converter and random noise from the high-voltage amplifier. With a +/-15 V supply and +/-100 V output range, the RMS noise is listed below.

Load CapacitanceHigh Speed OutputLow Noise Output
10 nF 4.1 mV* 1 mV
100 nF 1.3 mV* 0.3 mV
1 uF 1.3 mV 0.2 mV
10 uF 0.42 mV 0.1 mV

RMS Noise versus load capacitance

For applications requiring extremely low noise, a larger resistance can be used to reduce the effective bandwidth, which is approximately

Eff_bandwidth_form

where CL is the load capacitance. The recommended bandwidth in low-noise applications is 100 Hz. The noise measurements were performed with the input shorted. The noise may increase when significant current is drawn from the output due to ripple from the boost converter.

*For load capacitances of 100nF or smaller, the low noise output (V2) is recommended.

Application Notes

The amplifier input Vin should not be left floating as it will drift towards a supply rail. However, in applications where the input may float, a 1 kOhm resistor (1206 size) can be mounted at the location “Rin”, the input impedance is now 1 kOhm.

Heat Dissapation

At full power, the worst-case heat dissipation is approximately 15 W which is dissipated by the heatsink and fan. During normal operation the heat dissipation can be estimated by multiplying the required supply current and the differential supply voltage.

When the heat dissipation is less than 5W, the module fan can be removed. A high-performance passive heatsink is also available (PDm200B-Fanless). Note that the power dissipation in the +/-200V output range is always greater then 5 W so forced air cooling is a requirement.

With the passive cooling option, the thermal impedance of the PDm200B from junction to ambient is approximately 10 C/W. An air-flow of 100 LFM or greater is required when more than 5 W is dissipated continuously. The PDm200B will shut down when the heat-sink reaches 70 C.

Stability

In the +/-200 V range, oscillation can occur with some load capacitances when the output voltage is very close to the negative rail (-190V). This problem can be eliminated by using the low-noise output (V2). Alternatively, a 330pF 25V 0603 capacitor can be soldered on top of R14 which reduces the bandwidth to approximately 3 kHz and will avoid oscillation. This capacitor can be installed before delivery if necessary.

Bias Output

The bias output (Vb) provides a fixed +200 V output for driving 200 V three-wire actuators like benders that require a bias voltage. Actuators that require a +/-100 V bias can also be driven in this configuration as this is electrically identical. Lower bias voltages can also be achieved by adding a 1206 resistor to the location “Rb”. The resulting bias voltage is Bias Output Form For example, if Rb is 2.7 MOhm, Vb = 148 V.

The bias output can sink or source an average current of 10 mA. However, there is no protection so care must be taken not to exceed the current limit. If more than 10 mA is required, the primary output of a second PDm200 can be used to generate the bias.

PDm200B_bender_lg

200V Three wire bender driver with bias

Enable/Shutdown

When the amplifier is Enabled and operating, the green LED is on. If the LED off, or flashing, the causes and associated test procedures are:

  • The output current has been exceeded. Try reducing the frequency or voltage, or disconnect the load to test the module;
  • The temperature limit has been exceeded. Check that sufficient air-flow is available, the fan is spinning, and the heatsink is not fouled with dust; or
  • The supply voltage is not sufficient. Check the supply voltage. If the current rating is too small, some power supplies will continually cycle.

 

The Enable pin is a high impedance signal that floats 5V above the negative supply rail. It can be pulled to the negative supply rail to disable the amplifier. The voltage on this pin can also be monitored to check the status of the amplifier. Any monitoring circuit should have an input impedance of greater than 200 kOhm. A high level voltage on the enable pin indicates a normal status while a low level indicates a thermal shutdown.

The recommended enable circuits for unipolar and bipolar supplies are shown below. Any small signal transistors are suitable, e.g. BC817 and BC807.

PDm200_Enable_lg2

Enable circuit for unipolar supply

PDm200_EnableB_lg2

Enable circuit for bipolar supply

Overload Protection

The PDm200 is protected against over-current and thermal overload. If the PCB temperature exceeds 70 degrees C the amplifier will be disabled until the temperature reduces.

Safety

This device produces hazardous potentials and should be used by suitably qualified personnel. Do not operate the device when there are exposed conductors. Parts of the circuit will store charge so precautions must also be taken when the device is not powered.

Warranty

PDm200B devices are tested prior to delivery. There is no warranty period.

Dimensions

The mounting posts accept an M2.5 screw. For the PCB mounting version (PDm200-PCB), an Altium schematic and footprint library is available for download. The PCB pin part numbers are Phoenix Contact PST 1.0/5-3.5 and PST 1.0/4-3.5 which are 1 mm diameter, the recommended PCB hole is 1.5 mm. PCB mounting modules can be soldered directly to a board, or mounted with pin receptacles such as Harwin H3161-05.

Click here to download 3D model

PDm200B Dim lg2

PDm200 V9 Dimensions (mm)

How to order

Request a quote for this product by sending an e-mail through "Request for Quote" referencing the  part number or by calling us at 814-861-5688 (8:30am to 5:30pm EST).

More Information

101 Innovation Blvd. Suite 308
State College, PA 16803, USA
Ph: (814)-861-5688
contact@mmech.com
MMechLogosm