
GiD
The universal, adaptative and user
friendly pre and post processing
system for computer analysis
in science and engineering

Customization Manual

 Table of Contents

ii

Chapters Pag.
1 FEATURES 1
2 INTRODUCTION 3
3 CONFIGURATION FILES 7

3.1 XML file 7
3.1.1 ValidatePassword node 7

3.2 Conditions file (.cnd) 9
3.2.1 Example: Creating the conditions file 13

3.3 Problem and intervals data file (.prb) 15
3.3.1 Example: Creating the PRB data file 16

3.4 Materials file (.mat) 17
3.4.1 Example: Creating the materials file 18

3.5 Special fields 20
3.6 Unit System file (.uni) 24
3.7 Conditions symbols file (.sim) 25

3.7.1 Example: Creating the Symbols file 26
4 TEMPLATE FILES 29

4.1 Commands used in the .bas file 30
4.1.1 Single value return commands 30
4.1.2 Multiple values return commands 34
4.1.3 Specific commands 38

4.2 General description 48
4.3 Detailed example - Template file creation 49

4.3.1 Formatted nodes and coordinates listing 56
4.3.2 Elements, materials and connectivities listing 58
4.3.3 Nodes listing declaration 59
4.3.4 Elements listing declaration 61
4.3.5 Materials listing declaration 62
4.3.6 Nodes and its conditions listing declaration 63

5 EXECUTING AN EXTERNAL PROGRAM 67
5.1 Showing feedback when running the solver 68
5.2 Commands accepted by the GiD command.exe 68
5.3 Managing errors 75
5.4 Examples 75

6 POSTPROCESS DATA FILES 77
6.1 Postprocess results format: ProjectName.post.res 78

6.1.1 Gauss Points 79
6.1.2 Result Range Table 84
6.1.3 Result 85
6.1.4 Results example 89
6.1.5 Result group 94

6.2 Postprocess mesh format: ProjectName.post.msh 98

iiiTable of Contents

6.2.1 Mesh example 101
6.2.2 Group of meshes 103

6.3 Postprocess list file: ProjectName.post.lst 108
6.4 Postprocess graphs file: ProjectName.post.grf 108

7 TCL AND TK EXTENSION 111
7.1 Event procedures 111
7.2 GiD_Process function 119
7.3 GiD_Info function 120

7.3.1 materials 120
7.3.2 conditions 121
7.3.3 layers 122
7.3.4 gendata 122
7.3.5 intvdata 123
7.3.6 project 123
7.3.7 geometry 124
7.3.8 mesh 124
7.3.9 coordinates 125
7.3.10 variables 125
7.3.11 localaxes 125
7.3.12 ortholimits 126
7.3.13 perspectivefactor 126
7.3.14 graphcenter 126
7.3.15 meshquality 126
7.3.16 postprocess 126
7.3.17 automatictolerance 128
7.3.18 rgbdefaultbackground 129
7.3.19 list_entities 129
7.3.20 parametric 131
7.3.21 check 132
7.3.22 listmassproperties 133
7.3.23 problemtypepath 134
7.3.24 gidversion 134
7.3.25 view 134
7.3.26 ispointinside 134

7.4 Special Tcl commands 134
7.4.1 Geometry 134
7.4.2 Mesh 138
7.4.3 Data 139
7.4.4 Results 142
7.4.5 Graphs 144
7.4.6 OpenGL 145
7.4.7 Other 148

7.5 HTML help support 151
7.5.1 GiDCustomHelp 151

7.5.1.1 HelpDirs 152

ivTable of Contents

7.5.1.2 Structure of the help content 152
7.5.1.3 TocPage 152
7.5.1.4 IndexPage 153

7.5.2 HelpWindow 153
7.6 Managing menus 154
7.7 Custom Data Windows 158

7.7.1 TkWidget 158
7.7.2 Data Windows Behavior 161

7.8 GiD version 162
7.9 Detailed example 163

8 PLUG-IN EXTENSIONS 167
8.1 Tcl plug-in 167
8.2 GiD dynamic library plug-in 167

8.2.1 Introduction 167
8.2.2 In GiD 168
8.2.3 Developing the plug-in 169
8.2.4 Functions provided by GiD 171
8.2.5 List of examples 174

9 APPENDIX (PRACTICAL EXAMPLES) 177

1 FEATURES

1

GiD offers the following customization features:

Complete menu´s can be customised and created to suit the specific needs of the user´s
simulation software.
Simple interfaces can be developed between the data definition and the simulation
software.
Simple interfaces based on scalar, vector and matrix quantities can be developed for the
results visualisation.
Menus for the results visualisation can be customised and created according to the needs
of the application or analysis.

The customization in GiD is done by creating a Problem Type.

2INTRODUCTION

2 INTRODUCTION

3

When GiD is to be used for a particular type of analysis, it is necessary to predefine all the
information required from the user and to define the way the final information is given to
the solver module. To do so, some files are used to describe conditions, materials, general
data, units systems, symbols and the format of the input file for the solver. We give the
name Problem Type to this collection of files used to configure GiD for a particular type of
analysis.

Note: You can also learn how to configure GiD for a particular type of analysis by following
the Problem Type Tutorial; this tutorial is included with the GiD package you have
bought. You can also download it from the GiD support web page
(http://www.gidhome.com/support).

GiD has been designed to be a general-purpose Pre- and Postprocessor; consequently, the
configurations for different analyses must be performed according to the particular
specifications of each solver. It is therefore necessary to create specific data input files for
every solver. However, GiD lets you perform this configuration process inside the program
itself, without any change in the solver, and without having to program any independent
utility.

To configure these files means defining the data that must be input by the user, as well as
the materials to be implemented and other geometrical and time-dependent conditions. It
is also possible to add symbols or drawings to represent the defined conditions. GiD offers
the opportunity to work with units when defining the properties of the data mentioned
above, but there must be a configuration file where the definition of the units systems can
be found. It is also necessary to define the way in which this data is to be written inside
the file that will be the input file read by the corresponding solver.

The creation of a Problem Type involves the creation of a directory with the name of the
problem type and the extension .gid. This directory can be located in the current working

4INTRODUCTION

directory or the main GiD executable directory. The former can be useful during the
development of the project. Once it is finished, it may be advisable to move the directory
to the one where GiD is stored; in this way, your problem type will be added to those
included in the system and it will appear in the GiD menu (see Problem type from
Reference Manual). In both cases, the series of files must be inside the problem type
directory. The name for most of them will follow the format problem_type_name.xxx
where the extension refers to their particular function. Considering problem_type_name to
be the name of the problem type and project_name the name of the project, file
configuration is described by the following diagram:

Directory name: problem_type_name.gid
Directory location: c:\a\b\c\GiD_directory\problemtypes

Configuration files

problem_type_name.xml XML-based configuration
problem_type_name.cnd Conditions definitions
problem_type_name.mat Materials properties
problem_type_name.prb Problem and intervals data
problem_type_name.uni Units Systems
problem_type_name.sim Conditions symbols

5INTRODUCTION

 ***.geo Symbols geometrical definitions
 ***.geo Symbols geometrical definitions ...

Template files
problem_type_name.bas Information for the data input file
 ***.bas Information for additional files
 ***.bas Information for additional files ...

Tcl extension files
problem_type_name.tcl Extensions to GiD written in the Tcl/Tk programming language

Command execution files
problem_type_name.bat Operating system shell that executes the analysis process

The files problem_type_name.sim, ***.geo and ***.bas are not mandatory and can be
added to facilitate visualization (both kinds of file) or to prepare the data input for restart
in additional files (just ***.bas files). In the same way problem_type_name.xml is not
necessary; it can be used to customize features such as: version info, icon identification,
password validation, etc.

6CONFIGURATION FILES

3 CONFIGURATION FILES

7

These files generate the conditions and material properties, as well as the general problem
and intervals data to be transferred to the mesh, at the same time giving you the chance
to define geometrical drawings or symbols to represent some conditions on the screen.

3.1 XML file

The file problem_type.xml contains information related to the configuration of the problem
type, such as file browser, icon, password validation or message catalog location. Besides
this, the file can be used to store assorted structured infomation such as version number,
news added from the last version, and whatever the developer decides to include. This file
can be read using the Tcl extension tcom which is provided with GiD.

The data included inside the xml file should observe the following structure:

Yf¬¤­®°­ ª£«²·®£=´£°±§­¬Z?NKM?[
==Ym°­¥°~«[
==YLm°­¥°~«[
YLf¬¤­®°­ ª£«²·®£[

We suggest that the following nodes are included (the values of these nodes are just
examples):

Yk~«£[k~±²°~¬=QKNYLk~«£[to provide a long name for the problem type.
Ys£°±§­¬[QKNYLs£°±§­¬[dotted version number of the problem type.
Yj§¬§«³«d§as£°±§­¬[NNKMYLj§¬§«³«d§as£°±§­¬[to state the minimun GiD version
required.
Yf«~¥£c§ª£_°­µ±£°[= §«~¥£±Lf«~¥£c§ª£_°­µ±£°K¥§¤= YLf«~¥£c§ª£_°­µ±£°[icon
image to be used in the file browser to show a project corresponding to this problem
type. The recommended dimensions for this image are 17x12 pixels.
Yj±¥¡~²o­­²[= ±¡°§®²±L«±¥±= YLj±¥¡~²o­­²[a path, relative or absolute, indicating
where the folder with the name msgs is located. The folder msgs contains the messages
catalog for translation.
Ym~±±µ­°¢m~²¦[KKYLm~±±µ­°¢m~²¦[a path, relative or absolute, indicating where to
write the password information see ValidatePassword node -pag. 7-).
Ys~ª§¢~²£m~±±µ­°¢[YLs~ª§¢~²£m~±±µ­°¢[provides a custom validation script in order
to overide the default GiD validation (see ValidatePassword node -pag. 7-).

3.1.1 ValidatePassword node

The default action taken by GiD when validating a problem type password is verifying that
it is not empty. When a password is considered as valid, this information is written in the
file 'password.txt' which is located in the problem type directory. In order to override this
behaviour, two nodes are provided in the .xml file

8ValidatePassword node

PasswordPath: The value of this node specifies a relative or absolute path describing
where to locate/create the file password.txt. If the value is a relative path it is taken
with respect to the problem type path.

Example:

Ym~±±µ­°¢m~²¦[KKYLm~±±µ­°¢m~²¦[

ValidatePassword: The value of this node is a Tcl script which will be executed when a
password for this problem type needs to be validated. The script receives the parameters
for validation in the following variables:

key with the contents of the password typed,

dir with the path of the problem type, and

computer_name with the name of host machine.

 Note: It's like this Tcl procedure prototype: proc PasswordPath { key dir
computer_name } { ... body... }

The script should return one of three possible codes:

0 in case of failure.

1 in case of success.

2 in case of success; the difference here is that the problem type has just saved the
password information so GiD should not do it.

Furthermore, we can provide a description of the status returned for GiD to show to the
user. If another status is returned, it is assumed to be 1 by default.

Below is an example of a <ValidatePassword> node.

Ys~ª§¢~²£m~±±µ­°¢[
==@´~ª§¢~²§­¬K£¶£=±§«³ª~²£±=~¬=£¶²£°¬~ª=®°­¥°~«=²­=´~ª§¢~¢£=²¦£=©£·=¤­°=²¦§±=
¡­«®³²£°¬~«£
==@§¬±²£~¢=~¬=£¶²£°¬~ª=®°­¥°~«=¡~¬= £=³±£¢=~=²¡ª=®°­¡£¢³°£
==§¤= ¹= x¡~²¡¦= ¹±£²= °£±= x£¶£¡= x¤§ª£= ¨­§¬= A¢§°= ´~ª§¢~²§­¬K£¶£z= A©£·=
A¡­«®³²£°¬~«£z»=«±¥£°°z=»=¹
=====°£²³°¬=xª§±²=M=?b°°­°=A«±¥£°°?z=
==»
==±µ§²¡¦=J°£¥£¶®=JJ=A°£±=¹
====¤~§ªo_=¹
======°£²³°¬=xª§±²=M=?·­³=~±©=«£=²­=¤~§ª>?z
====»
====­©~¬¢±~´£o_=¹
======®°­¡=±~´£|®~±±=¹¢§°=§¢=®~±±»=¹
========±£²=¢~²£=x¡ª­¡©=¤­°«~²=x¡ª­¡©=±£¡­¬¢z=J¤­°«~²=?Bv=B«=B¢?z

9ValidatePassword node

========±£²=¤¢=x­®£¬=x¤§ª£=¨­§¬=A¢§°=KK=?®~±±µ­°¢K²¶²?z=?~?z
========®³²±=A¤¢=?A§¢=A®~±±=@=A¢~²£=m~±±µ­°¢=¤­°=m°­ ª£«=²·®£=DA¢§°D?
========¡ª­±£=A¤¢
======»
======±~´£|®~±±=A¢§°=A¡­«®³²£°¬~«£=A©£·
======°£¬~«£=±~´£|®~±±=??
======°£²³°¬=xª§±²=O=?®~±±µ­°¢=A©£·=±~´£¢= ·=«£?z
====»
====­©o_=¹
======°£²³°¬=xª§±²=N=?®~±±µ­°¢=A©£·=µ§ªª= £=±~´£¢= ·=¥§¢?z
====»
====¢£¤~³ª²=¹
======°£²³°¬=xª§±²=M=?b°°­°W=³¬£¶®£¡²£¢=°£²³°¬=´~ª³£=A°£±?z
====»
==»
YLs~ª§¢~²£m~±±µ­°¢[

3.2 Conditions file (.cnd)

Files with extension .cnd contain all the information about the conditions that can be
applied to different entities. The condition can adopt different field values for every entity.
This type of information includes, for instance, all the displacement constraints and applied
loads in a structural problem or all the prescribed and initial temperatures in a thermial
analysis.

An important characteristic of the conditions is that they must define what kind of entity
they are going to be applied over, i.e. over points, lines, surfaces, volumes or layers, and
what kind of entity they will be transferred over, i.e. over nodes, over face elements or
over body elements.

Over nodes This means that the condition will be transferred to the nodes contained in
the geometrical entity where the condition is assigned.
Over face elements ?multiple? If this condition is applied to a line that is the
boundary of a surface or to a surface that is the boundary of a volume, this condition is
transferred to the higher elements, marking the affected face. If it is declared as
multiple, it can be transferred to more than one element face (if more than one exists).
By default it is considered as single, and only one element face will be marked.
Over body elements If this condition is applied to lines, it will be transferred to line
elements. If assigned to surfaces, it will be transferred to surface elements. Likewise, if
applied to volumes, it will be transferred to volume elements.

10Conditions file (.cnd)

Note: For backwards compatibility, the command 'over elements' is also accepted; this will
transfer the condition either to elements or to faces of higher level elements.

Another important feature is that all the conditions can be applied to different entities with
different values for all the defined intervals of the problem.

Therefore, a condition can be considered as a group of fields containing the name of the
particular condition, the geometric entity over which it is applied, the mesh entity over
which it will be transferred, its corresponding properties and their values.

The format of the file is as follows:

`lkafqflkW=¡­¬¢§²§­¬|¬~«£
`lkaqvmbW=D­´£°D=ED®­§¬²±DI=Dª§¬£±DI=D±³°¤~¡£±DI=D´­ª³«£±DI=Dª~·£°DF
`lkajbpeqvmbW= D­´£°D= ED¬­¢£±DI= D¤~¡£= £ª£«£¬²±DID¤~¡£= £ª£«£¬²±= «³ª²§®ª£DI=
D ­¢·=£ª£«£¬²±DF
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£xD@tfaqe@DE­®²§­¬~ª|£¬²°·|ª£¬¥²¦Fz
==KKK
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£xD@tfaqe@DE­®²§­¬~ª|£¬²°·|ª£¬¥²¦Fz
bka=`lkafqflk

`lkafqflkW=¡­¬¢§²§­¬|¬~«£
==KKK
bka=`lkafqflk

Note: #CB# means Combo Box.

Note: #WIDTH# means the size of the entry used by the user to enter the value of the
condition. Specifies an integer value indicating the desired width of the entry window, in
average-size characters of the widget's font.

Local Axes

nrbpqflkW=¤§£ª¢|¬~«£xD@i^@DED¥ª­ ~ªDI=D~³²­«~²§¡DI=D~³²­«~²§¡=~ª²£°¬~²§´£DFz=
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£xD@tfaqe@DE­®²§­¬~ª|£¬²°·|ª£¬¥²¦Fz

This type of field refers to the local axes system to be used. The position of the values
indicates the kind of local axes.

If it only has a single default value, this will be the name of the global axes. If two values
are given, the second one will reference a system that will be computed automatically for
every node and will depend on geometric constraints, like whether or not it is tangent,
orthogonal, etc. If a third value is given, it will be the name of the automatic alternative
axes, which are the automatic axes rotated 90 degrees.

11Conditions file (.cnd)

All the different user-defined systems will automatically be added to these default
possibilities.

To enter only a specific kind of local axes it is possible to use the modifiers #G#,#A#,#L#.

#G#: global axes;
#A#: automatic axes;
#L#: automatic alternative axes.

When using these modifiers the position of the values does not indicate the kind of local
axes.

Example

nrbpqflkW=i­¡~ª|^¶£±@i^@El®²§­¬=~³²­«~²§¡@^@Il®²§­¬=~³²­«~²§¡|~ª²@i@F
s^irbW=J^³²­«~²§¡J

Note: All the fields must be filled with words, where a word is considered as a string of
characters without any blank spaces. The strings signaled between quotes are literal and
the ones inside brackets are optional. The interface is case-sensitive, so any uppercase
letters must be maintained. The default_field_value entry and various optional_value_i
entries can be alphanumeric, integers or reals. GiD treats them as alphanumeric until the
moment they are written to the solver input files.

Global axes:

X=1 0 0

Y=0 1 0

Z=0 0 1

Automatic axes:

For surfaces, this axes are calculated from the unitary normal N:

z'=N

if N is coincident with the global Y direction (Nx or Nz > some tolerance) then

 x'=Y x N / |Y x N|

else

 x'=Z x N / |Z x N|

y'=N x x'

z'=N

For lines, this axes are calculated from the unitary tangent T:

x'=T

if T is coincident with the global Z direction (Nx or Ny > some tolerance) then

 y'=Y x x' / |Y x x'|

else

12Conditions file (.cnd)

 y'=Z x x' / |Z x x'|

z'=x' x y'

Automatic alternative axes:

They are calculated like the automatic case and then swap x and y axes:

x''= y'

y''= - x'

z''= z'

For curves

x'=unitary tangent to the curve on the place where the condition is applied

 If this tangent is different of the Z global axe=(0,0,1) then

y'=Y x x'

 else

y'=Z x x'

z'=x' x y'

 Note: the tangent x' is considered different of (0,0,1) is the first or second component is
greater than 1/64

One flag that can optionally be added to a condition is:

`^kobmb^qW=·£±

It is written after CONDMESHTYPE and means that one condition can be assigned to the
same entity several times.

Self Calculated #FUNC# fields:

Another type of field that can be included inside a condition is a #FUNC# to do some
calculation,

where the key #FUNC#, means that the value of this field will be calculated just when the
mesh is generated. It can be considered as a function that evaluates when meshing.

Valid variables for a #FUNC# field are:

k³«b¬²§²·: to track the numerical id of the geometric source entity
¶=·=¸=: to use the coordinates of the node or entity center where the condition is
applied
`­¬¢E¬³«|¤§£ª¢Iob^iF: to use the value of other fields of this condition (REAL or INT
declare that must be considered as a real or a integer number)
Valid mathematical operations are the same as the used for the *Operation template
command.

e.g.

nrbpqflkW=p³°¤~¡£|¬³« £°@crk`@Ek³«b¬²§²·F

13Conditions file (.cnd)

s^irbW=M

In the above example, k³«b¬²§²· is one of the possible variables of the function. It will be
substituted by the label of the geometrical entity from where the node or element is
generated.

nrbpqflkW= u|®°£±±@crk`@E`­¬¢EPIob^iFGE¶J`­¬¢ENIob^iFFL=
E`­¬¢EOIob^iFJ`­¬¢ENIob^iFFF
s^irbW=M

In this second example, the ¶ variable is used, which means the x-coordinate of the node
or of the center of the element. Others fields of the condition can also be used in the
function. Variables · and ¸ give the y- and z-coordinates of this point.

Note: There are other options available to expand the capabilities of the Conditions
window (see Special fields -pag. 20-).

3.2.1 Example: Creating the conditions file

Here is an example of how to create a conditions file, explained step by step:

3.2.1.1 First, you have to create the folder or directory where all the problem type files are
located, problem_type_name.gid in this case.

3.2.1.2 Then create and edit the file (problem_type_name.cnd in this example) inside the
recently created directory (where all your problem type files are located). As you
can see, except for the extension, the names of the file and the directory are the
same.

3.2.1.3 Create the first condition, which starts with the line:

`lkafqflkW=m­§¬²J`­¬±²°~§¬²±

The parameter is the name of the condition. A unique condition name is required for this
conditions file.

3.2.1.4 This first line is followed by the next pair:

`lkaqvmbW=­´£°=®­§¬²±=
`lkajbpeqvmbW=­´£°=¬­¢£±

which declare what entity the condition is going to be applied over. The first line,
CONDTYPE:... refers to the geometry, and may take as parameters the sentences "over
points", "over lines", "over surfaces" or "over volumes".

The second line refers to the type of condition applied to the mesh, once generated. GiD
does not force you to provide this second parameter, but if it is present, the treatment and
evaluation of the problem will be more acurate. The available parameters for this
statement are "over nodes" and "over elements".

3.2.1.5 Next, you have to declare a set of questions and values applied to this condition.

nrbpqflkW=i­¡~ªJ^¶£±@i^@EJdil_^iJF

14Example: Creating the conditions file

s^irbW=Jdil_^iJ
nrbpqflkW=uJc­°¡£
s^irbW=MKM
nrbpqflkW=uJ`­¬±²°~§¬²W@`_@ENIMF
s^irbW=N
nrbpqflkW=u|~¶§±W@`_@Eabcloj^qflk|uuIabcloj^qflk|uvIabcloj^qflk|uwF
s^irbW=abcloj^qflk|uu
bka=`lkafqflk

After the QUESTION: prompt, you have the choice of putting the following kinds of word:

An alphanumeric field name.
An alphanumeric field name followed by the #LA# statement, and then the single or
double parameter.
An alphanumeric field name followed by the #CB# statement, and then the optional
values between parentheses.

The VALUE: prompt must be followed by one of the optional values, if you have declared
them in the previous QUESTION: line. If you do not observe this format, the program may
not work correctly.

In the previous example, the X-Force QUESTION takes the value 0.0. Also in the example,
the X-Constraint QUESTION includes a Combo Box statement (#CB#), followed by the
declaration of the choices 1 and 0. In the next line, the value takes the parameter 1. The
X_axis QUESTION declares three items for the combo box:
DEFORMATION_XX,DEFORMATION_XY,DEFORMATION_XZ, with the value
DEFORMATION_XX chosen.

Beware of leaving blank spaces between parameters. If in the first question you put the
optional values (-GLOBAL, -AUTO-) (note the blank space after the comma) there will be
an error when reading the file. Take special care in the Combo Box question parameters,
so as to avoid unpredictable parameters.

3.2.1.6 The conditions defined in the .cnd file can be managed in the Conditions window
(found in the Data menu) in the Preprocessing component of GiD.

15Example: Creating the conditions file

Conditions window in GiD
Preprocessing

3.3 Problem and intervals data file (.prb)

Files with the extension .prb contain all the information about general problem and
intervals data. The general problem data is all the information required for performing the
analysis and it does not concern any particular geometrical entity. This differs from the
previous definitions of conditions and materials properties, which are assigned to different
entities. An example of general problem data is the type of solution algorithm used by the
solver, the value of the various time steps, convergence conditions and so on.

Within this data, one may consider the definition of specific problem data (for the whole
process) and intervals data (variable values along the different solution intervals). An
interval would be the subdivision of a general problem that contains its own particular
data. Typically, one can define a different load case for every interval or, in dynamic
problems, not only variable loads, but also variation in time steps, convergence conditions
and so on.

The format of the file is as follows:

mol_ibj=a^q^
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
==KKK
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
bka=mol_ibj=a^q^

fkqbos^i=a^q^
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
==KKK

16Problem and intervals data file (.prb)

nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
bka=fkqbos^i=a^q^

All the fields must be filled with words, where a word is considered as a string of
characters without any blank spaces. The strings signaled between quotes are literal and
the ones inside brackets are optional. The interface is case-sensitive, so any uppercase
letters must be maintained. The default_field_value entry and various optional_value_i
entries can be alphanumeric, integers or real numbers, depending on the type.

Note: There are other options available to expand the capabilities of the Problem Data
window (see Special fields -pag. 20-).

3.3.1 Example: Creating the PRB data file

Here is an example of how to create a problem data file, explained step by step:

3.3.1.1 Create and edit the file (problem_type_name.prb in this example) inside the
problem_type_name directory (where all your problem type files are located).
Except for the extension, the names of the file and the directory must be the
same.

3.3.1.2 Start the file with the line:

mol_ibj=a^q^

3.3.1.3 Then add the following lines:

nrbpqflkW=r¬§²|p·±²£«@`_@EpfI`dpIr±£°F
s^irbW=pf
nrbpqflkW=q§²ª£
s^irbW=a£¤~³ª²|²§²ª£

The first question defines a combo style menu called Unit_System, which has the SI option
selected by default. The second question defines a text field called Title, and its default
value is Default_title.

3.3.1.4 To end the file, add the following line:

bka=mol_ibj=a^q^

3.3.1.5 The whole file is as follows:

mol_ibj=a^q^
nrbpqflkW=r¬§²|p·±²£«@`_@EpfI`dpIr±£°F
s^irbW=pf
nrbpqflkW=q§²ª£
s^irbW=a£¤~³ª²|²§²ª£

17Example: Creating the PRB data file

bka=mol_ibj=a^q^

3.3.1.6 The options defined in the .prb file can be managed in the Problem Data window
(found in the Data menu) in the Preprocessing component of GiD.

Problem Data window in GiD
Preprocessing

3.4 Materials file (.mat)

Files with the extension .mat include the definition of different materials through their
properties. These are base materials as they can be used as templates during the
Preprocessing step for the creation of newer ones.

You can define as many materials as you wish, with a variable number of fields. None of
the unused materials will be taken into consideration when writing the data input files for
the solver. Alternatively, they can be useful for generating a materials library.

Conversely to the case of conditions, the same material can be assigned to different levels
of geometrical entity (lines, surfaces or volumes) and can even be assigned directly to the
mesh elements.

In a similar way to how a condition is defined, a material can be considered as a group of
fields containing its name, its corresponding properties and their values.

The format of the file is as follows:

j^qbof^iW=«~²£°§~ª|¬~«£
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
==KKK
nrbpqflkW=¤§£ª¢|¬~«£xD@`_@DEKKKI­®²§­¬~ª|´~ª³£|§IKKKFz
s^irbW=¢£¤~³ª²|¤§£ª¢|´~ª³£
bka=j^qbof^i

j^qbof^iW=«~²£°§~ª|¬~«£
==KKK
bka=j^qbof^i

If a material has a variable property (an example would be where a property was

18Materials file (.mat)

dependent on temperature and was defined with several values for several temperatures)
a table of changing values may be declared for this property. When the solver evaluates
the problem, it reads the values and applies a suitable property value.

The declaration of the table requires two lines of text:

The first is a QUESTION line with a list of alphanumeric values between parentheses.

nrbpqflkW=¤§£ª¢|¬~«£WEKKKI­®²§­¬~ª|´~ª³£|§IKKKF

These values are the names of each of the columns in the table so that the number of
values declared is the number of columns.

This first line is followed by another with the actual data values. It starts with the words
VALUE: #N#, and is followed by a number that indicates the quantity of elements in the
matrix and, finally, the list of values.

s^irbW=@k@=¬³« £°|­¤|´~ª³£±=KKK=´~ª³£|¬³« £°|§=KKK

The number of values declared for the matrix obviously has to be the number of columns
multiplied by the number of rows to be declared.

This kind of material specification is most likely to be used in thermo-mechanical
simulations, where the problem is exposed to a temperature variation, and the properties
of the materials change for each temperature value.

All the fields must be filled with words, where a word is considered as a string of
characters without any blank spaces. The strings signaled between quotes are literal and
the ones within brackets are optional. The interface is case-sensitive, so any uppercase
letters must be maintained. The default_field_value entry and various optional_value_i
entries can be alphanumeric, integers or real numbers, depending on their type.

Note: There are other options available to expand the capabilities of the Materials window
(see Special fields -pag. 20-).

3.4.1 Example: Creating the materials file

Here is an example of how to create a materials file, explained step by step:

3.4.1.1 Create and edit the file (problem_type_name.mat in this example) inside the
problem_type_name directory (where all your problem type files are located). As
you can see, except for the extension, the names of the file and the directory are
the same.

3.4.1.2 Create the first material, which starts with the line:

j^qbof^iW=^§°

The parameter is the name of the material. A unique material name is required for this into
this materials file (do not use blank spaces in the name of the material).

3.4.1.3 The next two lines define a property of the material and its default value:

19Example: Creating the materials file

nrbpqflkW=a£¬±§²·
s^irbW=NKM

You can add as many properties as you wish. To end the material definition, add the
following line:

bka=j^qbof^i

3.4.1.4 In this example we have introduced some materials; the .mat file would be as
follows:

j^qbof^iW=^§°
nrbpqflkW=a£¬±§²·
s^irbW=NKMN
bka=j^qbof^i

j^qbof^iW=^fpf|QPQM|p²££ª
nrbpqflkW=vlrkd|Eb¶F
s^irbW=ONbHV
nrbpqflkW=peb^o|jlari
s^irbW=UKMTbHV
nrbpqflkW=mlfpplk|EkruvF
s^irbW=MKP
nrbpqflkW=^imu
s^irbW=MKMMMMMSS
nrbpqflkW=abkpfa^a|EabkpF
s^irbW=MKTUR
bka=j^qbof^i

j^qbof^iW=`­¬¡°£²£
nrbpqflkW=a£¬±§²·
s^irbW=OPRM
bka=j^qbof^i

3.4.1.5 The materials defined in the .mat file can be managed in the Materials window
(found in the Data menu) in the Preprocessing component of GiD.

20Example: Creating the materials file

Materials window in GiD Preprocessing

3.5 Special fields

These fields are useful for organizing the information within data files. They make the
information shown in the data windows more readable. In this way you can better
concentrate on the data properties relevant to the current context.

Book: With the Book field it is possible to split the data windows into other windows.
For example, we can have two windows for the materials, one for the steels and another
for the concretes:

_llhW=p²££ª±

...

All steels come here

...

_llhW=`­¬¡°£²£±

...

All concretes come here

...

Options corresponding to
books

The same applies to conditions. For general and interval data the book field groups a set
of properties.

Title: The Title field groups a set of properties on different tabs of one book. All
properties appearing after this field will be included on this tab.

21Special fields

qfqibW=_~±§¡

...

Basics properties

....

qfqibW=^¢´~¬¡£¢

...

Advanced properties

....

Help: With the Help field it is possible to assign a description to the data property
preceding it. In this way you can inspect the meaning of the property through the help
context function by holding the cursor over the property or by right-clicking on it.

QUESTION: X-Constraint#CB#(1,0)

VALUE: 1

HELP: If this flag is set, movement is ...

Image: The Image field is useful for inserting descriptive pictures in the data window.
The value of this field is the file name of the picture relating to the problem type
location.

22Special fields

fj^dbW=·­³¬¥K¥§¤

Data window with an image

Unit field: With this feature it is possible to define and work with properties that have
units. GiD is responsible for the conversion between units of the same magnitude

....

QUESTION: Normal_Pressure#UNITS#

VALUE: 0.0Pa

...

Data property with units

Dependencies: Depending on the value, we can define some behavior associated with
the property. For each value we can have a list of actions. The syntax is as follows:

DEPENDENCIES:(<V1>,[TITLESTATE,<Title>,<State>
],<A1>,<P1>,<NV1>,...,<An>,<Pn>,<NVn>) ... (<Vm>,<Am>,<Pm>,<NVm>,...)

where:

3.5..1 <Vi> is the value that triggers the actions. A special value is #DEFAULT#,
which refers to all the values not listed.

23Special fields

3.5..2 [TITLESTATE,<Title>,<State>] this argument is optional. Titlestate should
be used to show or hide book labels. Many Titlestate entries can be given.
<Title> is the title defined for a book (TITLE: Title). State is the visualization
mode: normal or hidden.

3.5..3 <Ai> is the action and can have one of these values: SET, HIDE, RESTORE. All
these actions change the value of the property with the following differences:
SET disables the property, HIDE hides the property and RESTORE brings the
property to the enabled state.

3.5..4 <Pi> is the name of the property to be modified.
3.5..5 <NVi> is the new value of <Pi>. A special value is #CURRENT#, which refers

to the current value of <Pi>.

Here is an example:

KKK
qfqibW=d£¬£°~ª
nrbpqflkW=q·®£|­¤|^¬~ª·±§±W@`_@EcfiifkdIplifafcf`^qflkF
s^irbW=plifafcf`^qflk
abmbkabk`fbpW=EcfiifkdIqfqibpq^qbIc§ªª§¬¥Jp²°~²£¥·I¬­°«~ªIobpqlobI
c§ªª§¬¥|^¬~ª·±§±Ido^sfqvIefabIp­ª§¢§¤§¡~²§­¬|^¬~ª·±§±I@`roobkq@F
abmbkabk`fbpW=Eplifafcf`^qflkIqfqibpq^qbIc§ªª§¬¥Jp²°~²£¥·I¦§¢¢£¬IefabI
c§ªª§¬¥|^¬~ª·±§±I@`roobkq@IobpqlobIp­ª§¢§¤§¡~²§­¬|^¬~ª·±§±I@`roobkq@F
qfqibW=c§ªª§¬¥Jp²°~²£¥·
nrbpqflkW=c§ªª§¬¥|^¬~ª·±§±W@`_@Edo^sfqvIiltJmobpprobIciltJo^qbF
s^irbW=do^sfqv=
nrbpqflkW=p­ª§¢§¤§¡~²§­¬|^¬~ª·±§±W@`_@Eqeboj^iIqebojlJjb`e^kf`^iF
s^irbW=qeboj^i
KKK

State: Defines the state of a field; this state can be: disabled, enabled or hidden. Here
is an example:

KKK
nrbpqflkW=bª~±²§¡=«­¢³ª³±=uu=~¶§±
s^irbW=OKNbHNN
pq^qbW=efaabk
KKK

#MAT#('BookName'): Defines the field as a material, to be selected from the list of
materials in the book 'BookName'. Here is an example:

=nrbpqflkW`­«®­±§²§­¬|j~²£°§~ª@j^q@E_~±£j~²F
=s^irbW^fpf|QPQM|pqbbi

24Unit System file (.uni)

3.6 Unit System file (.uni)

When GiD is installed, the file units.gid is copied within the GiD directory. In this file a
table of magnitudes is defined. For each magnitude there is a set of units and a conversion
factor between the unit and the reference unit. The units systems are also defined. A unit
system is a set of mangnitudes and the corresponding unit.

_bdfk=q^_ib
=ibkdqe=W=«I=NMM=¡«I=N£HP=««
=KKK
=pqobkdqe=W=©¥G«L±{OI=kI=NKM£JN=©®
bka

_bdfk=pvpqbjEfkqbok^qflk^iF
=ibkdqe=W=«
=j^pp=W=©¥
=pqobkdqe=W=k
=KKK
=qbjmbo^qrob=W=`£ª
bka

The syntax of the unit file (problem_type_name.uni) within the problem type is similar. It
can include the line:

rpbo=abcfkbaW=bk^_iba

(or afp^_ibaF

meaning that the user is able (or not able) to define his own system unit within the
project. If the line does not appear in the file the value is assumed to be ENABLED.

It is possible to ignore all units systems defined by default inside the file units.gid:

rpb=_^pb=pvpqbjpW=afp^_iba

(or bk^_ibaF

With the command HIDDEN: 'magnitude', 'magnitude' certain magnitudes will not be
displyed in the Problem units window.

efaabkW=±²°£¬¥²¦I=®°£±±³°£

If the problem type uses a property which has a unit, then GiD creates the file
project_name.uni in the project directory. This file includes the information related to the
unit used in the geometric model and the unit system used. The structure of this file is:

jlabiW=©«
mol_ibjW=rpbo=abcfkba

25Unit System file (.uni)

_bdfk=pvpqbj
ibkdqeW=«
mobpprobW=m~
j^ppW=©¥
pqobkdqeW=k
bka

In this file, MODEL refers to the unit of the geometric model and PROBLEM is the name
of the units system used by GiD to convert all the data properties in the output to the
solver. If this name is USER DEFINED, then the system is the one defined within the file.
The block

_bdfk=pvpqbj=
KKK=
bka

corresponds to the user-defined system.

Data unit window

3.7 Conditions symbols file (.sim)

Files with the extension .sim comprise different symbols to represent some conditions
during the preprocessing stage. You can define these symbols by creating ad hoc
geometrical drawings and the appropriate symbol will appear over the entity with the
applied condition every time you ask for it.

One or more symbols can be defined for every condition and the selection will depend on
the specified values in the file, which may be obtained through mathematical conditions.

The spatial orientation can also be defined in this file, depending on the values taken by
the required data. For global definitions, you have to input the three components of a
vector to express its spatial direction. GiD takes these values from the corresponding

26Conditions symbols file (.sim)

conditions window. The orientation of the vector can be understood as the rotation from
the vector (1,0,0) towards the new vector defined in the file.

For line and surface conditions, the symbols may be considered as local. In this case, GiD
does not consider the defined spatial orientation vector and it takes its values from the line
or surface orientation. The orientation assumes the vector (1,0,0) to be the corresponding
entity's normal.

These components, making reference to the values obtained from the adequate conditions,
may include C-language expressions. They express the different field values of the
mentioned condition as cond(type,i), where type (real or int) refers to the type of variable
(not case-sensitive) and i is the number of the field for that particular condition.

3.7.1 Example: Creating the Symbols file

Here is an example of how to create a symbols file. Create and edit the file
(problem_type_name.sim in this example) inside the problem_type_name directory (where
all your problem type files are located). Except for the extension, the names of the file and
the directory must be the same.

The contents of the problem_type_name.sim example should be the following:

¡­¬¢=m­§¬²J`­¬±²°~§¬²±
P
¥ª­ ~ª
¡­¬¢E§¬²IRF
N
M
M
p³®®­°²PaK¥£­
¥ª­ ~ª
¡­¬¢E§¬²INF=CC=¡­¬¢E§¬²IPF
N
M
M
p³®®­°²K¥£­
¥ª­ ~ª
¡­¬¢E§¬²INF=ºº=¡­¬¢E§¬²IPF
¡­¬¢E§¬²IPF
¡­¬¢E§¬²INFGEJNF
M

27Example: Creating the Symbols file

p³®®­°²JOaK¥£­
¡­¬¢=c~¡£Ji­~¢
N
ª­¡~ª
¤~ ±E¡­¬¢E°£~ªIOFF=H=¤~ ±E¡­¬¢E°£~ªIQFF=H=¤~ ±E¡­¬¢E°£~ªISFF[MK
¡­¬¢E°£~ªIOF
¡­¬¢E°£~ªIQF
¡­¬¢E°£~ªISF
k­°«~ªK¥£­

This is a particular example of the .sim file where four different symbols have been
defined. Each one is read from a ***.geo file. There is no indication of how many symbols
are implemented overall. GiD simply reads the whole file from beginning to end.

The ***.geo files are obtained through GiD. You can design a particular drawing to
symbolize a condition and this drawing will be stored as problem_name.geo when saving
this project as problem_name.gid. You do not need to be concerned about the size of the
symbol, but should bear in mind that the origin corresponds to the point (0,0,0) and the
reference vector is (1,0,0). Subsequently, when these ***.geo files are invoked from
problem_type_name.sim, the symbol drawing appears scaled on the display at the entity's
location.

Nevertheless, the number of symbols and, consequently, the number of ***.geo files can
vary from one condition to another. In the previous example, for instance, the condition
called Point-Constraints, which is defined by using cond, comprises three different
symbols. GiD knows this from the number 3 written below the condition's name. Next, GiD
looks to see if the orientation is relative to the spatial axes (global) or moves together with
its entity (local). In the example, the three symbols concerning point constraints are
globally oriented.

Imagine that this condition has six fields. The first, third and fifth field values express if
any constraint exist along the X-axis, the Y-axis and the Z-axis, respectively. These values
are integers and in the case that they are null, the degree of freedom in question is
assumed to be unconstrained.

For the first symbol, obtained from the file Support3D.geo, GiD reads cond(int,5), or the
Z-constraint. If it is false, which means that the value of the field is zero, the C-condition
will not be satisfied and GiD will not draw it. Otherwise, the C-condition will be satisfied
and the symbol will be invoked. When this occurs, GiD skips the rest of the symbols
related to this condition. Its orientation will be the same as the original drawing because
the spatial vector is (1,0,0).

All these considerations are valid for the second symbol, obtained from the file
Support.geo, but now GiD has to check that both constraints (&&) - the X-constraint and
the Y-constraint - are fixed (their values are not zero).

28Example: Creating the Symbols file

For the third symbol, obtained from the file Support-2D.geo, only one of them has to be
fixed (||) and the orientation of the symbol will depend on which one is free and which one
is fixed, showing on the screen the corresponding direction for both degrees of freedom.

Finally, for the fourth symbol, onbtained from the file Normal.geo, it can be observed that
the drawing of the symbol, related to the local orientation will appear scaled according to
the real-type values of the second, fourth and sixth field values. Different types of
C-language expressions are available in GiD. Thus, the last expression would be equivalent
to entering '(fabs(cond(real,2))>0. || fabs(cond(real,4))!=0. ||
fabs(cond(real,6))>1e-10)'.

Note: As previously mentioned, GiD internally creates a project_name.geo file when
saving a project, where it keeps all the information about the geometry in binary format.
In fact, this is the reason why the extension of these files is .geo. However, the file
project_name.geo is stored in the project_name.gid directory, whereas these user-created
***.geo files are stored in the problem_type_name.gid directory.

4 TEMPLATE FILES

29

Once you have generated the mesh, and assigned the conditions and the materials
properties, as well as the general problem and intervals data for the solver, it is necessary
to produce the data input files to be processed by that program.

To manage this reading, GiD is able to interpret a file called problem_type_name.bas
(where problem_type_name is the name of the working directory of the problem type
without the .bas extension).

This file (template file) describes the format and structure of the required data input file for
the solver that is used for a particular case. This file must remain in the
problem_type_name.gid directory, as well as the other files already described -
problem_type_name.cnd, problem_type_name.mat, problem_type_name.prb and also
problem_type_name.sim and ***.geo, if desired.

In the case that more than one data input file is needed, GiD allows the creation of more
files by means of additional ***.bas files (note that while problem_type_name.bas creates
a data input file named project_name.dat, successive ***.bas files - where *** can be any
name - create files with the names project_name-1.dat, project_name-2.dat, and so on).
The new files follow the same rules as the ones explained next for
problem_type_name.bas files.

These files work as an interface from GiD's standard results to the specific data input for
any individual solver module. This means that the process of running the analysis simply
forms another step that can be completed within the system.

In the event of an error in the preparation of the data input files, the programmer has only
to fix the corresponding problem_type_name.bas or ***.bas file and rerun the example,
without needing to leave GiD, recompile or reassign any data or re-mesh.

This facility is due to the structure of the template files. They are a group of macros (like
an ordinary programming language) that can be read, without the need of a compiler,
every time the corresponding analysis file is to be written. This ensures a fast way to
debug mistakes.

30Commands used in the .bas file

4.1 Commands used in the .bas file

4.1.1 Single value return commands

When writing a command, it is generally not case-sensitive (unless explicitly mentioned),
and even a mixture of uppercase and lowercase will not affect the results.

*npoin, *ndime, *nnode, *nelem, *nmats, *nintervals. These return, respectively,
the number of points, the dimensions of the project being considered, the number of
nodes of the element with the highest number, the number of elements, the number of
materials and the number of data intervals. All of them are considered as integers and
do not carry arguments (see G¤­°«~²IG§¬²¤­°«~²FI except G¬£ª£«I which can bring
different types of elements. These elements are: m­§¬²I= i§¬£~°I= q°§~¬¥ª£I=
n³~¢°§ª~²£°~ªI= q£²°~¦£¢°~I=e£¶~¦£¢°~I=m°§±«I=m·°~«§¢I=p®¦£°£I depending on
the number of edges the element has, and All, which comprises all the possible types.
The command G¬«~²± returns the number of materials effectively assigned to an entity,
not all the defined ones.

*GenData. This must carry an argument of integer type that specifies the number of
the field to be printed. This number is the order of the field inside the general data list.
This must be one of the values that are fixed for the whole problem, independently of
the interval (see Problem and intervals data file (.prb) -pag. 15-). The name of the field,
or an abreviation of it, can also be the argument instead. The arguments ob^i or fkqI to
express the type of number for the field, are also available (see
G¤­°«~²IG§¬²¤­°«~²IG°£~ª¤­°«~²IG§¤FK If they are not specified, the program will
print a character string. It is mandatory to write one of them within an expression,
except for strcmp and strcasecmp. The numeration must start with the number 1.

Note: Using this command without any argument will print all fields

*IntvData. The only difference between this and the previous command is that the field
must be one of those fields varying with the interval (see Problem and intervals data file
(.prb) -pag. 15-). This command must be within a loop over intervals (see Gª­­®) and
the program will automatically update the suitable value for each iteration.

Note: Using this command without any argument will print all fields

*MatProp. This is the same as the previous command except that it must be within a
loop over the materials (see Gª­­®). It returns the property whose field number or name
is defined by its argument. It is recommended to use names instead of field numbers.

 If the argument is 0, it returns the material's name.

Note: Using this command without any argument will print all fields

Caution: If there are materials with different numbers of fields, you must ensure not to
print non-existent fields using conditionals.

31Single value return commands

*ElemsMatProp. This is the same as Matprop but uses the material of the current
element. It must be within a loop over the elements (see *loop). It returns the property
whose field number or name is defined by its argument. It is recommended to use
names instead of field numbers.

Example:

Gª­­®=£ª£«£¬²±
==G£ª£«±¬³«=G£ª£«±«~²=G£ª£«±«~²®°­®E·­³¬¥F
G£¬¢=£ª£«£¬²±

*Cond. The same remarks apply here, although now you have to notify with the
command *set (see *set) which is the condition being processed. It can be within a loop
(see *loop) over the different intervals should the conditions vary for each interval.

Note: Using this command without any argument will print all fields

*CondName. This returns the conditions's name. It must be used in a loop over
conditions or after a *set cond command.

*CondNumFields. This returns the number of fields of the current condition. It must be
used in a loop over conditions or after *set cond

*CondHasLocalAxes. returns 1 if the condition has a local axis field, 0 else

*CondNumEntities. You must have previously selected a condition (see *set cond).
This returns the number of entities that have a condition assigned over them.

*ElemsNum: This returns the element's number.

*NodesNum: This returns the node's number.

*MatNum: This returns the material's number.

*ElemsMat: This returns the number of the material assigned to the element.

All of these commands must be within a proper loop (see Gª­­®) and change automatically
for each iteration. They are considered as integers and cannot carry any argument. The
number of materials will be reordered numerically, beginning with number 1 and increasing
up to the number of materials assigned to any entity.

*LayerNum: This returns the layer's number.

*LayerName: This returns the layer's name.

*LayerColorRGB: This returns the layer's color in RGB (three integer numbers between 0
and 256). If parameter (1), (2) or (3) is specified, the command returns only the value of
one color. RED is 1, GREEN is 2 and BLUE is 3.

The commands *LayerName, *LayerNum and *LayerColorRGB must be inside a loop
over layers; you cannot use these commands in a loop over nodes or elements.

32Single value return commands

Example:

Gª­­®=ª~·£°±
Gi~·£°k~«£=Gi~·£°`­ª­°od_
Gl®£°~²§­¬Ei~·£°`­ª­°od_ENFLORRKMF= Gl®£°~²§­¬Ei~·£°`­ª­°od_EOFLORRKMF=
Gl®£°~²§­¬Ei~·£°`­ª­°od_EPFLORRKMF
G£¬¢=ª~·£°±

*NodesLayerNum: This returns the layer's number. It must be used in a loop over
nodes.

*NodesLayerName: This returns the layer's name. It must be used in a loop over nodes.

*ElemsLayerNum: This returns the layer's number. It must be used in a loop over elems.

*ElemsLayerName: This returns the layer's name. It must be used in a loop over elems.

*LayerNumEntities. You must have previously selected a layer (see *set layer). This
returns the number of entities that are inside this layer.

*LoopVar. This command must be inside a loop and it returns, as an integer, what is
considered to be the internal variable of the loop. This variable takes the value 1 in the
first iteration and increases by one unit for each new iteration. The parameter
elems,nodes,materials,intervals, used as an argument for the corresponding loop, allows
the program to know which one is being processed. Otherwise, if there are nested loops,
the program takes the value of the inner loop.

*Operation. This returns the result of an arithmetical expression what should be written
inside parentheses immediately after the command. This operation must be defined in
C-format and can contain any of the commands that return one single value. You can
force an integer or a real number to be returned by means of the parameters INT or
REAL. Otherwise, GiD returns the type according to the result.

The valid C-functions that can be used are:

HIJIGILIBIEIFIZIYI[I>ICIºI numbers and variables
±§¬
¡­±
²~¬
~±§¬
~¡­±
~²~¬
~²~¬O
£¶®
¤~ ±
~ ±
®­µ
±¯°²

33Single value return commands

ª­¥
ª­¥NM
«~¶
«§¬
±²°¡«®
±²°¡~±£¡«®

The following are valid examples of operations:

G­®£°~²§­¬EQG£ª£«±¬³«HNF=
G­®£°~²§­¬EUGEª­­®´~°JNFHNF

Note: There cannot be blank spaces between the commands and the parentheses that
include the parameters.

Note: Commands inside G­®£°~²§­¬ do not need G at the beginning.

*LocalAxesNum. This returns the identification name of the local axes system, either
when the loop is over the nodes or when it is over the elements, under a referenced
condition.

*nlocalaxes. This returns the number of the defined local axes system.

*IsQuadratic. This returns the value 1 when the elements are quadratic or 0 when they
are not.

*Time. This returns the number of seconds elapsed since midnight.

*Clock. This returns the number of clock ticks (aprox. milliseconds) of elapsed
processor time.

Example:

G±£²=´~°=²MZ¡ª­¡©=
Gª­­®=¬­¢£±=
====G¬­¢£±¡­­°¢=
G£¬¢=¬­¢£±=
G±£²=´~°=²NZ¡ª­¡©=
£ªª~®±£¢=²§«£ZG­®£°~²§­¬EE²NJ²MFLNMMMKMF=±£¡­¬¢±

*Units('magnitude'). This returns the current unit name for the selected magnitude
(the current unit is the unit shown inside the unit window).

Example:

*Units(LENGTH)

34Single value return commands

*BasicUnit('magnitude'). This returns the basic unit name for the selected magnitude
(the basic unit is the unit defined as { Basic } in the *.uni file).

 Example:

G_~±§¡r¬§²EibkdqeF

*FactorUnit('unit'). This returns the numeric factor to convert a magnitude from the
selected unit to the basic unit.

Example:

Gc~¡²­°r¬§²EmobpprobF

4.1.2 Multiple values return commands

These commands return more than one value in a prescribed order, writing them one after
the other. All of them except LocalAxesDef are able to return one single value when a
numerical argument giving the order of the value is added to the command. In this way,
these commands can appear within an expression. Neither LocalAxesDef nor the rest of the
commands without the numerical argument can be used inside expressions. Below, a list of
the commands with the appropriate description is displayed.

*NodesCoord. This command writes the node's coordinates. It must be inside a loop
(see *loop) over the nodes or elements. The coordinates are considered as real numbers
(see *realformat and *format). It will write two or three coordinates according to the
number of dimensions the problem has (see *Ndime).

If *NodesCoord receives an integer argument (from 1 to 3) inside a loop of nodes, this
argument indicates which coordinate must be written: x, y or z. Inside a loop of nodes:

Gk­¢£±`­­°¢= writes three or two coordinates depending on how many dimensions there
are.

Gk­¢£±`­­°¢ENF=writes the x coordinate of the actual node of the loop.
Gk­¢£±`­­°¢EOF= writes the y coordinate of the actual node of the loop.
Gk­¢£±`­­°¢EPF= writes the z coordinate of the actual node of the loop.

If the argument real is given, the coordinates will be treated as real numbers.

Example: using *NodesCoord inside a loop of nodes

`­­°¢§¬~²£±W
k­¢£=u=v
Gª­­®=¬­¢£±
G¤­°«~²=?BR§BNQKR£BNQKR£?
Gk­¢£±k³«=Gk­¢£±`­­°¢ENI°£~ªF=Gk­¢£±`­­°¢EOI°£~ªF
G£¬¢=¬­¢£±

35Multiple values return commands

This command effects a rundown of all the nodes in the mesh, listing their identifiers and
coordinates (x and y).

The contents of the project_name.dat file could be something like this:

`­­°¢§¬~²£±W
k­¢£=u=v
====N=JNKOURTN£HMMN=JNKVOVPN£HMMM
====O=JNKNRSNN£HMMN=JOKNPRQV£HMMM
====P=JNKOSQPS£HMMN=JRKQQVNV£JMMN
====Q=JNKMSNSN£HMMN=JNKMURQR£HMMM
====R=JNKNOMOV£HMMN=VKOOPTP£JMMO
====KKK

*NodesCoord can also be used inside a loop of elements. In this case, it needs an
additional argument that gives the local number of the node inside the element. After this
argument it is also possible to give which coordinate has to be written: x, y or z.

Inside a loop of elements:

Gk­¢£±`­­°¢EQF writes the coordinates of the 4th node of the actual element of the
loop.

Gk­¢£±`­­°¢ERINF= writes the x coordinate of the 5th node of the actual element of the
loop.

Gk­¢£±`­­°¢ERIOF writes the y coordinate of the 5th node of the actual element of the
loop.

Gk­¢£±`­­°¢ERIPF writes the z coordinate of the 5th node of the actual element of the
loop.

*ElemsConec. This command writes the element's connectivities, i.e. the list of the
nodes that belong to the element, displaying the direction for each case (anti-clockwise
direction in 2D, and depending on the standards in 3D). For shells, the direction must be
defined. However, this command accepts the argument swap and this implies that the
ordering of the nodes in quadratic elements will be consecutive instead of hierarchical.
The connectivities are considered as integers (see *intformat and *format).

If *ElemsConec receives an integer argument (begining from 1), this argument indicates
which element connectity must be written:

Gª­­®=£ª£«±
==~ªª=¡­¬£¡²§´§²§£±W=G£ª£«±¡­¬£¡
==¤§°±²=¡­¬£¡²§´§²·=G£ª£«±¡­¬£¡ENF
G£¬¢=£ª£«±

Note: In the first versions of GiD, the optional parameter of the last command explained

36Multiple values return commands

was invert instead of swap, as it is now. It was changed due to technical reasons. If you
have an old .bas file prior to this specification, which contains this command in its previous
form, when you try to export the calculation file, you will be warned about this change of
use. Be aware that the output file will not be created as you expect.

*GlobalNodes. This command returns the nodes that belong to an element's face
where a condition has been defined (on the loop over the elements). The direction for
this is the same as for that of the element's connectivities. The returned values are
considered as integers (see G§¬²¤­°«~² and G¤­°«~²).If Gdª­ ~ªk­¢£± receives an
integer argument (beginning from 1), this argument indicates which face connectity
must be written.

So, the local numeration of the faces is:

Triangle: 1-2 2-3 3-1

Quadrilateral: 1-2 2-3 3-4 4-1

Tetrahedra: 1-2-3 2-4-3 3-4-1 4-2-1

Hexahedra: 1-2-3-4 1-4-8-5 1-5-6-2 2-6-7-3 3-7-8-4 5-8-7-6

Prism: 1-2-3 1-4-5-2 2-5-6-3 3-6-4-1 4-5-6

Pyramid: 1-2-3-4 1-5-2 2-5-3 3-5-4 4-5-1

*LocalNodes. The only difference between this and the previous one is that the
returned value is the local node's numbering for the corresponding element (between 1
and nnode).

*CondElemFace. This command return the number of face of the element where a
condition has been defined (beginning from 1). The information is equivalent to the
obtained with the localnodes command

*ElemsNnode. This command returns the number of nodes of the current element
(valid only inside a loop over elements).

Example:

Gª­­®=£ª£«±=
==Gbª£«±k¬­¢£=
G£¬¢=£ª£«±

*ElemsNnodeCurt. This command returns the number of vertex nodes of the current
element (valid only inside a loop over elements). For example, for a quadrilateral of 4, 8
or 9 nodes, it returns the value 4.

37Multiple values return commands

*ElemsNNodeFace. This command returns the number of face nodes of the current
element face (valid only inside a loop over elements onlyincond, with a previous *set
cond of a condition defined over face elements).

Example:

Gª­­®=£ª£«±
Gbª£«±k¬­¢£c~¡£
G£¬¢=£ª£«±

*ElemsNNodeFaceCurt. This command returns the short (corner nodes only) number
of face nodes of the current element face (valid only inside a loop over elements
onlyincond, with a previous *set cond of a condition defined over face elements).

Example:

Gª­­®=£ª£«±=
Gbª£«±k¬­¢£c~¡£`³°²
G£¬¢=£ª£«±

*ElemsType: This returns the current element type as a integer value: 1=Linear,
2=Triangle, 3=Quadrilateral, 4=Tetrahedra, 5=Hexahedra, 6=Prism,
7=Point,8=Pyramid,9=Sphere,10=Circle. (Valid only inside a loop over elements.)

*ElemsTypeName: This returns the current element type as a string value: i§¬£~°I=
q°§~¬¥ª£I= n³~¢°§ª~²£°~ªI= q£²°~¦£¢°~I= e£¶~¦£¢°~I= m°§±«I= m­§¬²I= m·°~«§¢I=
p®¦£°£I=`§°¡ª£. (Valid only inside a loop over elements.)

*ElemsCenter: This returns the element center. (Valid only inside a loop over
elements.)

Note: This command is only available in GiD version 9 or later.

*ElemsRadius: This returns the element radius. (Valid only inside a loop over sphere or
Circle elements.)

Note: This command is only available in GiD version 8.1.1b or later.

*ElemsNormal. This command writes the normal's coordinates. It must be inside a loop
(see *loop) over elements, and it is only defined for triangles, quadrilaterals, and circles
(and also for lines in 2D cases).

If *ElemsNormal receives an integer argument (from 1 to 3) this argument indicates which
coordinate of the normal must be written: x, y or z.

*LocalAxesDef. This command returns the nine numbers that define the
transformation matrix of a vector from the local axes system to the global one.

Example:

Gª­­®=ª­¡~ª~¶£±=

38Multiple values return commands

G¤­°«~²=?BNMKQª¥=BNMKQª¥=BNMKQª¥?=
¶DZGi­¡~ª^¶£±a£¤ENF=Gi­¡~ª^¶£±a£¤EQF=Gi­¡~ª^¶£±a£¤ETF=
G¤­°«~²=?BNMKQª¥=BNMKQª¥=BNMKQª¥?=
·DZGi­¡~ª^¶£±a£¤EOF=Gi­¡~ª^¶£±a£¤ERF=Gi­¡~ª^¶£±a£¤EUF=
G¤­°«~²=?BNMKQª¥=BNMKQª¥=BNMKQª¥?=
¸DZGi­¡~ª^¶£±a£¤EPF=Gi­¡~ª^¶£±a£¤ESF=Gi­¡~ª^¶£±a£¤EVF=
G£¬¢=ª­¡~ª~¶£±

*LocalAxesDef(EulerAngles). This is as the last command, only with the EulerAngles
option. It returns three numbers that are the 3 Euler angles (radians) that define a local
axes system

Rotation of a vector expressed in terms of euler angles.

*LocalAxesDefCenter. This command returns the origin of coordinates of the local
axes as defined by the user. The "Automatic" local axes do not have a center, so the
point (0,0,0) is returned. The index of the coordinate (from 1 to 3) can optionally be
given to LocalAxesDefCenter to get the x, y or z value.

Example:

Gi­¡~ª^¶£±a£¤`£¬²£°=
Gi­¡~ª^¶£±a£¤`£¬²£°ENF=Gi­¡~ª^¶£±a£¤`£¬²£°EOF=Gi­¡~ª^¶£±a£¤`£¬²£°EPF

4.1.3 Specific commands

*\ To avoid line-feeding you need to write *\, so that the line currently being used
continues on the following line of the file filename.bas.
*# If this is placed at the beginning of the line, it is considered as a comment and
therefore is not written.
** In order for an asterisk symbol to appear in the text, two asterisks ** must be
written.

*Include. The include command allows you to include the contents of a slave file inside
a master .bas file, setting a relative path from the Problem Type directory to this
secondary file.

Example:

G§¬¡ª³¢£=§¬¡ª³¢£±y£¶£¡¬²°ª«§K¦

Note: The *.bas extension cannot be used for the slave file to avoid multiple output files.

*MessageBox. This command stops the execution of the .bas file and prints a message
in a window; this command should only be used when a fatal error occurs.

39Specific commands

Example:

*MessageBox error: Quadrilateral elements are not permitted.

*WarningBox. This is the same as MessageBox, but the execution is not stopped.

Example:

t~°¬§¬¥_­¶= t~°¬§¬¥W= b¶§±²= _~¢= £ª£«£¬²±K=^= pqi= ¤§ª£= §±=~= ¡­ªª£¡²§­¬= ­¤=
²°§~¬¥ª£±= ­³¬¢§¬¥=~=´­ª³«£K

The following commands must be written at the beginning of a line and the rest of the line
will serve as their modifiers. No additional text should be written.

*loop, *end, *break. These are declared for the use of loops. A loop begins with a line
that starts with *loop (none of these commands is case-sensitive) and contains another
word to express the variable of the loop. There are some lines in the middle that will be
repeated depending on the values of the variable, and whose parameters will keep on
changing throughout the iterations if necessary. Finally, a loop will end with a line that
finishes with *end. After *end, you may write any kind of comments in the same line.
The command *break inside a *loop or *for block, will finish the execution of the loop
and will continue after the *end line.

The variables that are available for *loop are the following:

elems, nodes, materials, conditions, layers, intervals, localaxes. These
commands mean, respectively, that the loop will iterate over the elements, nodes,
materials, conditions, layers, intervals or local axes systems. The loops can be nested
among them. The loop over the materials will iterate only over the effectively
assigned materials to an entity, in spite of the fact that more materials have been
defined. The number of the materials will begin with the number 1. If a command
that depends on the loop is located outside it, the number will also take by default
the value 1.

After the command *loop:

- If the variable is elems or nodes, you can include one of the modifiers: *all,
*OnlyInCond or *OnlyInLayer . The first one signifies that the iteration is going to be
performed over all the entities; the *OnlyInCond modifier implies that the iteration will
only take place over the entities that satisfy the relevant condition. This condition must
have been previously defined with *set cond. *OnlyInLayer implies that the iteration
will only take place over the entities that are in the specified layer; layers must be
specified with the command *set Layer. By default, it is assumed that the iteration will
affect all the entities.

 - If the variable is material you can include the modifier *NotUsed to make a loop over
those materials that are defined but not used.

- If the variable is conditions you must include one of the modifiers: *Nodes,
*BodyElements, *FaceElements or *Layers , to do the loop on the conditions

40Specific commands

defined over this kind of mesh entity.

- If the variable is layers you can include modifiers: OnlyInCond if before was set a
condition defined 'over layers'

Example 1:

Gª­­®=¬­¢£±
G¤­°«~²=?BR§BNQKR£BNQKR£?
Gk­¢£±k³«=Gk­¢£±`­­°¢ENI°£~ªF=Gk­¢£±`­­°¢EOI°£~ªF
G£¬¢=¬­¢£s

This command carries out a rundown of all the nodes of the mesh, listing their identifiers
and coordinates (x and y coordinates).

Example 2:

Gp£²=`­¬¢=m­§¬²Jt£§¥¦²=G¬­¢£±
Gª­­®=¬­¢£±=l¬ª·f¬`­¬¢
Gk­¢£±k³«=G¡­¬¢ENF=
G£¬¢

This carries out a rundown of all the nodes assigned the condition "Point-Weight" and
provides a list of their identifiers and the first "weight" field of the condition in each case.

Example 3:

Gi­­®=bª£«±=
Gbª£«±k³«=Gbª£«±i~·£°k³«=
Gb¬¢=bª£«±

This carries out a rundown of all the elements and provides a list of their identifier and the
identifier of the layer to which they belong.

Example 4:

Gi­­®=i~·£°±=
Gi~·£°k³«=Gi~·£°k~«£=Gi~·£°`­ª­°od_
Gb¬¢=i~·£°±

This carries out a rundown of all the layers and for each layer it lists its identifier and
name.

 Example 5:

Gi­­®=`­¬¢§²§­¬±=l´£°c~¡£bª£«£¬²±
==G`­¬¢k~«£

41Specific commands

==Gi­­®=bª£«±=l¬ª·f¬`­¬¢=
G£ª£«±¬³«=G¡­¬¢£ª£«¤~¡£=G¡­¬¢
Gb¬¢=bª£«±
Gb¬¢=`­¬¢§²§­¬±

This carries out a rundown of all conditions defined to be applied on the mesh 'over face
elements', and for each condition it lists its name and for each element where this
condition is applied are printed the element number, the marked face and the condition
field values.

*if, *else, *elseif, *endif. These commands create the conditionals. The format is a
line which begins with *if followed by an expression between parenthesis. This
expression will be written in C-language syntax, value return commands, will not begin
with *, and its variables must be defined as integers or real numbers (see *format,
*intformat, *realformat), with the exception of strcmp and strcasecmp. It can include
relational as well as arithmetic operators inside the expressions.

 The following are valid examples of the use of the conditionals:

G§¤EE¤~ ±Eª­­®´~°FLQFYNK£HOF=
G§¤EE®PY®OFºº®QF=
G§¤EE±²°¡~±£¡«®E¡­¬¢ENFI?ui­~¢?FZZMFCCE¡­¬¢EOF>ZMFF

The first example is a numerical example where the condition is satisfied for the values of
the loop under 400, while the other two are logical operators; in the first of these two, the
condition is satisfied when p3<p2 or p4 is different from 0, and in the second, when the
first field of the condition is called XLoad (with this particular writing) and the second is not
null.

If the checked condition is true, GiD will write all the lines until it finds the corresponding
*else, *elseif or *endif (*end is equivalent to *endif after *if). *else or *elseif are optional
and require the writing of all the lines until the corresponding *endif, but only when the
condition given by *if is false. If either *else or *elseif is present, it must be written
between *if and *endif. The conditionals can be nested among them.

The behaviour of *elseif is identical to the behaviour of *else with the addition of a new
condition:

G§¤Ed£¬a~²~EPNI§¬²FZZNF=
KKKENF=
G£ª±£§¤Ed£¬a~²~EPNI§¬²FZZOF=
KKKEOF=
G£ª±£=
KKKEPF=

42Specific commands

G£¬¢§¤

 In the previous example, the body of the first condition (written as 1) will be written to
the data file if GenData(31,int) is 1, the body of the second condition (written as 2) will be
written to the data file if GenData(31,int) is 2, and if neither of these is true, the body of
the third condition (written as 3) will be written to the data file.Note: A conditional can
also be written in the middle of a line. To do this, begin another line and write the
conditional by means of the command *\.

*for, *end, *break. The syntax of this command is equivalent to *for in C-language.

G¤­°E´~°¬~«£Z£¶®°KNX´~°¬~«£YZ£¶®°KOX´~°¬~«£Z´~°¬~«£HNF=
G£¬¢=¤­°

The meaning of this statement is the execution of a controlled loop, since varname is equal
to expr.1 until it is equal to expr.2, with the value increasing by 1 for each step. varname
is any name and expr.1 and expr.2 are arithmetical expressions or numbers whose only
restrictions are to express the range of the loop.

The command *break inside a *loop or *for block, will finish the execution of the loop
and will continue after the *end line.

Example:

G¤­°E§ZNX§YZRX§Z§HNF=
´~°§~ ª£=§ZG§=
G£¬¢=¤­°

*set. This command has the following purposes:
*set cond: To set a condition.
*set Layer "layer name" *elems|nodes: To set a layer.
*set elems: To indicate the elements.
*set var: To indicate the variables to use.

It is not necessary to write these commands in lowercase, so *Set will also be valid in all
the examples.

*set cond.: In the case of the conditions, GiD allows the combination of a group of them
via the use of *add cond. When a specific condition is about to be used, it must first be
defined, and then this definition will be used until another is defined. If this feature is
performed inside a loop over intervals, the corresponding entities will be chosen.
Otherwise, the entities will be those referred to in the first interval.

It is done in this way because when you indicate to the program that a condition is going
to be used, GiD creates a table that lets you know the number of entities over which this
condition has been applied. It is necessary to specify whether the condition takes place
over the *nodes, over the *elems or over *layers to create the table.

So, a first example to check the nodes where displacement constraints exist could be:

43Specific commands

Gp£²=`­¬¢=s­ª³J`±²°²=G¬­¢£±=
G^¢¢=`­¬¢=p³°¤J`±²°²=G¬­¢£±=
G^¢¢=`­¬¢=i§¬£J`±²°²=G¬­¢£±=
G^¢¢=`­¬¢=m­§¬J`±²°²=G¬­¢£±

These let you apply the conditions directly over any geometric entity.

*Set Layer "layer name" *elems|nodes

*Add Layer "layer name"

*Remove Layer "layer name"

This command sets a group of nodes. In the following loops over nodes/elements with the
modifier *OnlyInLayer, the iterations will only take place over the nodes/elements of that
group.

Example 1:

G±£²=i~·£°=£¶~«®ª£|ª~·£°|N=G£ª£«±=
Gª­­®=£ª£«±=Gl¬ª·f¬i~·£°
=====køWGbª£«±k³«=k~«£=­¤=i~·£°WGbª£«±i~·£°k~«£=kø=­¤=i~·£°=WGbª£«±i~·£°k³«=
G£¬¢=£ª£«±

Example 2:

Gª­­®=ª~·£°±=
G±£²=i~·£°=Gi~·£°k~«£=G£ª£«±=
Gª­­®=£ª£«±=Gl¬ª·f¬i~·£°
=====køWGbª£«±k³«=k~«£=­¤=i~·£°WGbª£«±i~·£°k~«£=kø=­¤=i~·£°=WGbª£«±i~·£°k³«
G£¬¢=£ª£«±
G£¬¢=ª~·£°±

In this example the command Gi~·£°k~«£ is used to get the layer name.

There are some modifiers available to point out particular specifications of the conditions.

If the command G`~¬o£®£~² is added after G¬­¢£± or G£ª£«± in Gp£²=¡­¬¢, one entity can
appear several times in the entities list. If the command Gk­`~¬o£®£~² is used, entities will
appear only once in the list. By default, G`~¬o£®£~² is off except where one condition has
the G`~¬o£®£~² flag already set.

A typical case where you would not use G`~¬o£®£~² might be:

Gp£²=`­¬¢=i§¬£J`­¬±²°~§¬²±=G¬­¢£±

In this case, when two lines share one endpoint, instead of two nodes in the list, only one
is written.

44Specific commands

A typical situation where you would use G`~¬o£®£~² might be:

Gp£²=`­¬¢=i§¬£Jm°£±±³°£=G£ª£«±=G`~¬o£®£~²=

In this case, if one triangle of a quadrilateral has more than one face in the marked
boundary then we want this element to appear several times in the elements list, once for
each face.

Other modifiers are used to inform the program that there are nodes or elements that can
satisfy a condition more than once (for instance, a node that belongs to a certain number
of lines with different prescribed movements) and that have to appear unrepeated in the
data input file, or, in the opposite case, that have to appear only if they satisfy more than
one condition. These requirements are achieved with the commands
G­°E§I²·®£F and=G~¬¢E§I²·®£F, respectively, after the input of the condition, where i is
the number of the condition to be considered and type is the type of the variable (integer
or real).

For the previous example there can be nodes or elements in the intersection of two lines or
maybe belonging to different entities where the same condition had been applied. To avoid
the repetition of these nodes or elements, GiD has the modifier *or, and in the case where
two or more different values were applied over a node or element, GiD only would consider
one, this value being different from zero. The reason for this can be easily understood by
looking at the following example. Considering the previous commands transformed as:

Gp£²=`­¬¢=s­ª³J`±²°²=G¬­¢£±=G­°ENI§¬²F=G­°EOI§¬²F=
G^¢¢=`­¬¢=p³°¤J`±²°²=G¬­¢£±=G­°ENI§¬²F=G­°EOI§¬²F=
G^¢¢=`­¬¢=i§¬£J`±²°²=G¬­¢£±=G­°ENI§¬²F=G­°EOI§¬²F=
G^¢¢=`­¬¢=m­§¬J`±²°²=G¬­¢£±=G­°ENI§¬²F=G­°EOI§¬²F

where *or(1,int) means the assignment of that node to the considered ones satisfying the
condition if the integer value of the first condition's field is different from zero, and
(*or(2,int) means the same assignment if the integer value of the second condition's field
is different from zero). Let us imagine that a zero in the first field implies a restricted
movement in the direction of the X-axis and a zero in the second field implies a restricted
movement in the direction of the Y-axis. If a point belongs to an entity whose movement
in the direction of the X-axis is constrained, but whose movement in the direction of the
Y-axis is released and at the same time to an entity whose movement in the direction of
the Y-axis is constrained, but whose movement in the direction of the X-axis is released,
GiD will join both conditions at that point, appearing as a fixed point in both directions and
as a node satisfying the four expressed conditions that would be counted only once.

The same considerations explained for adding conditions through the use of *add cond
apply to elements, the only difference being that the command is *add elems. Moreover, it
can sometimes be useful to remove sets of elements from the ones assigned to the specific
conditions. This can be done with the command *remove elems. So, for instance, GiD
allows combinations of the type:

45Specific commands

Gp£²=`­¬¢=a³««·=G£ª£«±=
Gp£²=£ª£«±E^ªªF=
Go£«­´£=£ª£«±Ei§¬£~°F

To indicate that all dummy elements apart from the linear ones will be considered, as well
as:

Gp£²=`­¬¢=a³««·=G£ª£«±=
Gp£²=£ª£«±Ee£¶~¦£¢°~F=
G^¢¢=£ª£«±Eq£²°~¦£¢°~F=
G^¢¢=£ª£«±En³~¢°§ª~²£°~ªF=
G^¢¢=£ª£«±Eq°§~¬¥ª£F

The format for *set var differs from the syntax for the other two *set commands. Its
syntax is as follows:

*Set var varname = expression

where varname is any name and expression is any arithmetical expression, number or
command, where the latter must be written without * and must be defined as Int or Real.

A Tcl procedure can also be called, but it must return a numerical result.The following are
valid examples for these assignments:

Gp£²=´~°=©­NZ¡­¬¢ENI°£~ªF=
Gp£²=´~°=©­OZO=
Gp£²=´~°=pNZ`­¬¢k³«b¬²§²§£±=
Gp£²=´~°=®NZ£ª£«±¬³«EF=
Gp£²=´~°= Z­®£°~²§­¬E®NGOF=
G²¡ªE®°­¡=j³ª²§®ª·_·qµ­=¹=¶=»=¹=°£²³°¬=x£¶®°=¹A¶GO»z=»FGy
=Gp£²=´~°=~Z²¡ªEj³ª²§®ª·_·qµ­=G®NF

*intformat, *realformat, *format. These commands explain how the output of
different mathematical expressions will be written to the analysis file. The use of this
command consists of a line which begins with the corresponding version, *intformat,
*realformat or *format (again, these are not case-sensitive), and continues with the
desired writing format, expressed in C-language syntax argument, between double
quotes (").

The integer definition of *intformat and the real number definition of *realformat remain
unchanged until another definition is provided via *intformat and *realformat, respectively.
The argument of these two commands is composed of a unique field. This is the reason
why the *intformat and *realformat commands are usually invoked in the initial stages of
the .bas file, to set the format configuration of the integer or real numbers to be output
during the rest of the process.

46Specific commands

The *format command can include several field definitions in its argument, mixing integer
and real definitions, but it will only affect the line that follows the command's instance one.
Hence, the *format command is typically used when outputting a listing, to set a
temporary configuration.

In the paragraphs that follow, there is an explanation of the C format specification, which
refers to the field specifications to be included in the arguments of these commands. Keep
in mind that the type of argument that the *format command expects may be composed
of several fields, and the *intformat and *realformat commands' arguments are composed
of an unique field, declared as integer and real, respectively, all inside double quotes:

A format specification, which consists of optional and required fields, has the following
form: %[flags][width][.precision]typeThe start of a field is signaled by the percentage
symbol (%). Each field specification is composed of: some flags, the minimum width, a
separator point, the level of precision of the field, and a letter which specifies the type of
the data to be represented. The field type is the only one required.

The most common flags are:

- To left align the result

+ To prefix the numerical output with a sign (+ or -)

To force the real output value to contain a decimal point.

The most usual representations are integers and floats. For integers the letters d and i are
available, which force the data to be read as signed decimal integers, and u for unsigned
decimal integers.

For floating point representation, there are the letters e, f and g, these being followed by a
decimal point to separate the minimum width of the number from the figure giving the
level of precision.The number of digits after the decimal point depends on the requested
level of precision.

Note: The standard width specification never causes a value to be truncated. A special
command exists in GiD: *SetFormatForceWidth, which enables this truncation to a
prescribed number of digits.

For string representations, the letter s must be used. Characters are printed until the
precision value is reached.

The following are valid examples of the use of format:

Gf¬²¤­°«~²=?BR§?

With this sentence, usually located at the start of the file, the output of an integer quantity
is forced to be right aligned on the fifth column of the text format on the right side. If the
number of digits exceeds five, the representation of the number is not truncated.

Go£~ª¤­°«~²=?BNMKP£?

This sentence, which is also frequently located in the first lines of the template file, sets

47Specific commands

the output format for the real numbers as exponential with a minimum of ten digits, and
three digits after the decimal point.

G¤­°«~²=?BNM§BNMKP£BNM§BNRKS£?

This complex command will specify a multiple assignment of formats to some output
columns. These columns are generated with the line command that will follow the format
line. The subsequent lines will not use this format, and will follow the general settings of
the template file or the general formats: *IntFormat, *RealFormat.

*SetFormatForceWidth, *SetFormatStandard The default width specification of a
"C/C+" format, never causes a value to be truncated.

*SetFormatForceWidth is a special command that allows a figure to be truncated if the
number of characters to print exceeds the specified width.

*SetFormatStandard changes to the default state, with truncation disabled.

For example:

Gp£²c­°«~²c­°¡£t§¢²¦=
G±£²=´~°=¬³«ZJPNQNRKNSTUV=
G¤­°«~²=?BUKP¤?=
G¬³«=
Gp£²c­°«~²p²~¬¢~°¢=
G¤­°«~²=?BUKP¤?=
G¬³«

Output:

JPNQNRKN=
JPNQNRKNSU

The first number is truncated to 8 digits, but the second number, printed with "C"
standard, has 3 numbers after the decimal point, but more than 8 digits.

*TclThis command allows information to be printed using the Tcl extension language.
The argument of this command must be a valid Tcl command or expression which must
return the string that will be printed. Typically, the Tcl command is defined in the Tcl file
(.tcl , see TCL AND TK EXTENSION -pag. 111- for details).

Example: In this example the *Tcl command is used to call a Tcl function defined in the
problem type .tcl file. That function can receive a variable value as its argument with
*variable. It is also possible to assign the returned value to a variable, but the Tcl
procedure must return a numerical value.

In the .bas file:

48Specific commands

G±£²=´~°=¬³«ZN=
G²¡ªEt°§²£p³°¤~¡£f¬¤­=G¬³«F=
G±£²=´~°=¬³«OZ²¡ªEj³ª²§®ª·_·qµ­=G¬³«F

In the .tcl file:

®°­¡=t°§²£p³°¤~¡£f¬¤­=¹=¬³«=»=¹
====°£²³°¬=xd§a|f¬¤­=ª§±²|£¬²§²§£±=±³°¤~¡£±=A¬³«z=
»=

®°­¡=j³ª²§®ª·_·qµ­=¹=¶=»=¹
===°£²³°¬=x£¶®°=¹A¶GO»z=
»

4.2 General description

All the rules that apply to filename.bas files are also valid for other files with the .bas
extension. Thus, everything in this section will refer explicitly to the file filename.bas. Any
information written to this file, apart from the commands given, is reproduced exactly in
the output file (the data input file for the numerical solver). The commands are words that
begin with the character *. (If you want to write an asterisk in the file you should write **
.) The commands are inserted among the text to be literally translated. Every one of these
commands returns one (see Single value return commands -pag. 30-) or multiple (see
Multiple values return commands -pag. 34-) values obtained from the preprocessing
component. Other commands mimic the traditional structures to do loops or conditionals
(see Specific commands -pag. 38-). It is also possible to create variables to manage some
data. Comparing it to a classic programming language, the main differences will be the
following:

The text is reproduced literally, without printing instructions, as it is write-oriented.
There are no indices in the loops. When the program begins a loop, it already knows the
number of iterations to perform. Furthermore, the inner variables of the loop change
their values automatically. All the commands can be divided into three types:
Commands that return one single value. This value can be an integer, a real number
or a string. The value depends on certain values that are available to the command
and on the position of the command within the loop or after setting some other
parameters. These commands can be inserted within the text and write their value
where it corresponds. They can also appear inside an expression, which would be the
example of the conditionals. For this example, you can specify the type of the
variable, integer or real, except when using strcmp or strcasecmp. If these
commands are within an expression, no * should precede the command.
Commands that return more than one value. Their use is similar to that of the
previously indicated commands, except for the fact that they cannot be used in other
expressions. They can return different values, one after the other, depending on
some values of the project.

49General description

Commands that perform loops or conditionals, create new variables, or define some
specifications. The latter includes conditions or types of element chosen and also
serves to prevent line-feeding. These commands must start at the beginning of the
line and nothing will be written into the calculations file. After the command, in the
same line, there can be other commands or words to complement the definitions, so,
at the end of a loop or conditional, after the command you can write what loop or
conditional was finished.

The arguments that appear in a command are written immediately after it and inside
parenthesis. If there is more than one, they will be separated by commas. The
parentheses might be inserted without any argument inside, which is useful for writing
something just after the command without inserting any additonal spaces. The arguments
can be real numbers or integers, meaning the word ob^i or the word fkq (both in upper-
or lowercase) that the value to which it points has to be considered as real or integer,
respectively. Other types of arguments are sometimes allowed, like the type of element,
described by its name, in the command G±£²= £ª£«, or a chain of characters inserted
between double quotes " for the C-instructions ±²°¡«® and ±²°¡~±£¡«®K It is also
sometimes possible to write the name of the field instead of its ordering number.

EXAMPLE:

Below is an example of what a .bas file can be. There are two commands (*nelem and
*npoin) which return the total number of elements and nodes of a project.

BBBB=m°­ ª£«=p§¸£=BBBB
k³« £°=­¤=bª£«£¬²±=C=k­¢£±W
G¬£ª£«=G¬®­§¬

This .bas file will be converted into a project_name.dat file by GiD. The contents of the
project_name.dat file could be something like this:

BBBB=m°­ ª£«=p§¸£=BBBB
k³« £°=­¤=bª£«£¬²±=C=k­¢£±W
RPTV=QSTU

(5379 being the number of elements of the project, and 4678 the number of nodes).

4.3 Detailed example - Template file creation

Below is an example of how to create a Template file, step by step.

Note that this is a real file and as such has been written to be compatible with a particular
solver program. This means that some or all of the commands used will be non-standard
or incompatible with the solver that another user may be using.

The solver for which this example is written treats a line inside the calculation input file as
a comment if it is prefixed by a $ sign. In the case of other solvers, another convention

50Detailed example - Template file creation

may apply.

Of course, the real aim of this example is familiarize you with the commands GiD uses.
What follows is the universal method of accessing GiD's internal database, and then
outputting the desired data to the solver.

It is assumed that files with the .bas extension will be created inside the working directory
where the problem type file is located. The filename must be problem_type_name.bas for
the first file and any other name for the additional .bas files. Each .bas file will be read by
GiD and translated to a .dat file.

It is very important to remark that any word in the .bas file having no meaning as a GiD
compilation command or not belonging to any command instructions (parameters), will be
written verbatim to the output file.

First, we create the header that the solver needs in this particular case.

It consists of the name of the solver application and a brief description of its behaviour.

AJJJ=
`^ipbcW=moldo^j=clo=pqor`qro^i=^k^ivpfp

What follows is a commented line with the ECHO ON command. This, when uncommented,
is useful if you want to monitor the progress of the calculation. While this particular
command may not be compatible with your solver, a similar one may exist.

AJJJ=
A=b`el=lk

The next line specifies the type of calculation and the materials involved in the calculation;
this is not a GiD related command either.

AJJJ=
bpq^qf`lJifkb^iI=bk=plifalp

As you can see, a commented line with dashes is used to separate the different parts of
the file, thus improving the readability of the text.

The next stage involves the initialization of some variables. The solver needs this to start
the calculation process.

The following assignments take the first (parameter (1)) and second (parameter (2)) fields
in the general problem, as the number of problems and the title of the problem.

The actual position of a field is determined by checking its order in the problem file, so this
process requires you to be precise.

Assignment of the first (1) field of the Problem data file, with the command *GenData(1):

AJJJ=

51Detailed example - Template file creation

A=krj_bo=lc=mol_ibjpW=kmol_=Z=Gd£¬a~²~ENF=
AJJJ

Assignment of the second (2) field assignment, *GenData(2):

A=qfqib=lc=qeb=mol_ibjW=qfqrilZ=Gd£¬a~²~EOF=
AJJJ

The next instruction states the field where the starting time is saved. In this case, it is at
the 10th position of the general problem data file, but we will use another feature of the
*GenData command, the parameter of the command will be the name of the field.

This method is preferable because if the list is shifted due to a field deing added or
subtracted, you will not lose the actual position. This command accepts an abbreviation, as
long as there is no conflict with any other field name.

AJJJ=
A=qfjb=lc=pq^oqW=qfjbZ=Gd£¬a~²~Ep²~°²§¬¥|²§«£F=
AJJJ

Here comes the initialization of some general variables relevant to the project in question -
the number of points, the number of elements or the number of materials.

The first line is a description of the section.

A=afjbkpflkp=lc=qeb=mol_ibjW

The next line introduces the assignments.

afjbkpflkp=W

This is followed by another line which features the three variables to be assigned. NPNOD
gets, from the *npoin function, the number of nodes for the model; NELEM gets, from
*nelem, either the total number of elements in the model or the number of elements for
every kind of element; and NMATS is initialized with the number of materials:

kmklaZ=G¬®­§¬I=kbibjZ=G¬£ª£«I=kj^qpZ=G¬«~²±I=y

In the next line, NNODE gets the maximum number of nodes per element and NDIME gets
the variable *ndime. This variable must be a number that specifies whether all the nodes
are on the plane whose Z values are equal to 0 (NDIME=2), or if they are not (NDIME=3):

kklabZ=G¬¬­¢£I=kafjbZ=G¬¢§«£I=y

The following lines take data from the general data fields in the problem file. NCARG gets
the number of charge cases, NGDLN the number of degrees of freedom, NPROP the
properties number, and NGAUSS the gauss number; NTIPO is assigned dynamically:

NLOAD= *GenData(Load_Cases), *\

You could use NGDLN= *GenData(Degrees_Freedom), *\, but because the length of the

52Detailed example - Template file creation

argument will exceed one line, we have abbreviated its parameter (there is no conflict with
other question names in this problem file) to simplify the command.

kdaikZ=Gd£¬a~²~Ea£¥°££±|c°£FI=Gy=
kmolmZ=Gd£¬a~²~Em°­®£°²§£±|k °FI=y=
kd^rpZ=Gd£¬a~²~Ed~³±±|k °F=I=kqfmlZ=Gy

Note that the last assignment is ended with the specific command *\ to avoid line feeding.
This lets you include a conditional assignment of this variable, depending on the data in
the General data problem.

Within the conditional a C format-like strcmp instruction is used. This instruction compares
the two strings passed as a parameter, and returns an integer number which expresses
the relationship between the two strings. If the result of this operation is equal to 0, the
two strings are identical; if it is a positive integer, the first argument is greater than the
second, and if it is a negative integer, the first argument is smaller than the second.

The script checks what problem type is declared in the general data file, and then it
assigns the coded number for this type to the NTIPO variable:

G§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?mª~¬£J±²°£±±?FZZMF=
N=Gy=
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?mª~¬£J±²°~§¬?FZZMF=
O=Gy=
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?o£´­ªJp­ª§¢?FZZMF=
P=Gy=
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?p­ª§¢?FZZMF=
Q=Gy=
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?mª~²£±?FZZMF=
R=Gy=
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?o£´­ªJp¦£ªª?FZZMF=
S=Gy=
G£¬¢§¤

You have to cover all the cases within the if sentences or end the commands with an elseif
you do not want unpredictable results, like the next line raised to the place where the
parameter will have to be:

A=a£¤~³ª²=s~ª³£W=
G£ª±£=
MGy=
G£¬¢§¤

53Detailed example - Template file creation

In our case this last rule has not been followed, though this can sometimes be useful, for
example when the problem file has been modified or created by another user and the new
specification may differ from the one we expect.

The next assignment is formed by a string compare conditional, to inform the solver about
a configuration setting.

First is the output of the variable to be assigned.

I=ftofqZ=Gy

Then there is a conditional where the string contained in the value of the Result_File field
is compred with the string "Yes". If the result is 0, then the two strings are the same, while
the output result 1 is used to declare a boolean TRUE.

G§¤E±²°¡«®Ed£¬a~²~Eo£±³ª²|c§ª£FI?v£±?FZZMF=
N=IGy

Then we compare the same value string with the string "No", to check the complementary
option. If we find that the strings match, then we output a 0.

G£ª±£§¤E±²°¡«®Ed£¬a~²~Eo£±³ª²|c§ª£FI?k­?FZZMF=
M=IGy=
G£¬¢§¤

The second to last assignment is a simple output of the solver field contents to the INDSO
variable:

fkaplZ=Gd£¬a~²~Ep­ª´£°F=I=Gy

The last assignment is a little more complicated. It requires the creation of some internal
values, with the aid of the *set cond command.

The first step is to set the conditions so we can access its parameters. This setting may
serve for several loops or instructions, as long as the parameters needed for the other
blocks of instructions are the same.

This line sets the condition Point-Constraints as an active condition. The *nodes modifier
means that the condition will be listed over nodes. The *or(... modifiers are necessary
when an entity shares some conditions because it belongs to two or more elements.

As an example, take a node which is part of two lines, and each of these lines has a
different condition assigned to it. This node, a common point of the two lines, will have
these two conditions in its list of properties. So declaring the *or modifiers, GiD will decide
which condition to use, from the list of conditions of the entity.

A first instruction will be as follows, where the parameters of the *or commands are an
integer - (1, and (3, in this example - and the specification int, which forces GiD to read
the condition whose number position is the integer.

54Detailed example - Template file creation

In our case, we find that the first (1) field of the condition file is the X-constraint, and the
third (3) is the Y-constraint:

GiD still has no support for substituting the condition's position in the file by its
corresponding label, in contrast to case for the fields in the problem data file, for which it is
possible.

Gp£²=`­¬¢=p³°¤~¡£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F

Now we want to complete the setting of the loop, with the addition of new conditions.

G^¢¢=`­¬¢=i§¬£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F=
G^¢¢=`­¬¢=m­§¬²J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F

Observe the order in which the conditions have been included: firstly, the surface
constraints with the *Set Cond command, since it is the initial sentence; then the pair of
*Add Cond sentences, the line constraints; and finally, the point constraints sentence. This
logical hierarchy forces the points to be the most important items.

Last of all, we set a variable with the number of entities assigned to this particular
condition.

Note that the execution of this instruction is only possible if a condition has been set
previously.

kmobpZ=G`­¬¢k³«b¬²§²§£±

To end this section, we put a separator in the output file:

AJJJ
q¦³±I= ~¤²£°=²¦£= §¬§²§~ª§¸~²§­¬=­¤= ²¦£±£= ´~°§~ ª£±I=²¦§±=®~°²=­¤=²¦£=¤§ª£=
£¬¢±=³®=~±W

A=afjbkpflkp=lc=qeb=mol_ibjW
afjbkpflkbp=W
=kmklaZ=G¬®­§¬I=kbibjZ=G¬£ª£«I=kj^qpZ=G¬«~²±I=y
=kklabZ=G¬¬­¢£I=kafjbZ=G¬¢§«£I=y
=k`^odZ=Gd£¬a~²~E`¦~°¥£|`~±£±FI=Gy
=kdaikZ=Gd£¬a~²~Ea£¥°££±|c°£FI=Gy
=kmolmZ=Gd£¬a~²~Em°­®£°²§£±|k °FI=y
=kd^rpZ=Gd£¬a~²~Ed~³±±|k °F=I=kqfmlZ=Gy
G§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?q£¬±Jmª~¬~?FZZMF
N=Gy
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?a£¤Jmª~¬~?FZZMF
O=Gy

55Detailed example - Template file creation

G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?p­ªJo£´­ª?FZZMF
P=Gy
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?p­ªJq°§¢§«?FZZMF
Q=Gy
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?mª~¡~±?FZZMF
R=Gy
G£ª±£§¤E±²°¡«®Ed£¬a~²~Em°­ ª£«|q·®£FI?i~«§¬~±Jo£´?FZZMF
S=Gy
G£¬¢§¤
I=ftofqZ=Gy
G§¤E±²°¡«®Ed£¬a~²~Eo£±³ª²|c§ª£FI?v£±?FZZMF
N=Iy
G£ª±£§¤E±²°¡«®Ed£¬a~²~Eo£±³ª²|c§ª£FI?k­?FZZMF
M=Iy
G£¬¢§¤
===fkaplZ=Gd£¬a~²~Ep­ª´£°F=I=Gy
Gp£²=`­¬¢=p³°¤~¡£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F
G^¢¢=`­¬¢=i§¬£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F
G^¢¢=`­¬¢=m­§¬²J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F
kmobpZG`­¬¢k³«b¬²§²§£±
AJJJ

After creating or reading our model, and once the mesh has been generated and the
conditions applied, we can export the file (project_name.dat) and send it to the solver.

The command to create the .dat file can be found on the File -> Export -> Calculation File
GiD menu. It is also possible to use the keyboard shortcut Ctrl-x Ctrl-c.

These would be the contents of the project_name.dat file:

AJJJ
`^ipbcW=moldo^j=clo=pqor`qro^i=^k^ivpfp
AJJJ
Ab`el=lk
AJJJ
ifkb^oJpq^qf`I=plifap
AJJJ
Akrj_bo=lc=mol_ibjpW

56Detailed example - Template file creation

kmol_=Z=N
AJJJ
A=mol_ibj=qfqib=
qfqibZ=q§²ª£|¬~«£
AJJJ
Aafjbkpflkp=lc=qeb=mol_ibj
afjbkpflkp=W
==kmklaZ=NNS=I=kbibjZ=NTS=I=kj^qpZ=M=I=y
==kklabZ=P=I=kafjbZ=O=I=y=
==k`^odZ=N=I=kdaikZ=N=I=kmolmZ=R=I=y
==kd^rpZ=N=I=kqfmlZ=N=I=ftofqZ=N=I=y
==fkaplZ=NM=I=kmobpZ=M
AJJJ

This is where the calculation input begins.

4.3.1 Formatted nodes and coordinates listing

As with the previous section, this block of code begins with a title for the subsection:

A=kla^i=`lloafk^qbp

followed by the header of the output list:

A=klab=`lloaKJu=`lloaKJv=`lloaKJw

Now GiD will trace all the nodes of the model:

Gª­­®=¬­¢£±

For each node in the model, GiD will generate and output its number, using *NodesNum,
and its coordinates, using *NodesCoord.

The command executed before the output *format will force the resulting output to follow
the guidelines of the specified formatting.

In this example below, the *format command gets a string parameter with a set of codes:
%6i specifies that the first word in the list is coded as an integer and is printed six points
from the left; the other three codes, all %15.5f, order the printing of a real number,
represented in a floating point format, with a distance of 15 spaces between columns (the
number will be shifted to have the last digit in the 15th position of the column) and the
fractional part of the number will be represented with five digits.

Note that this is a C language format command.

G¤­°«~²=?BS§BNRKR¤BNRKR¤BNRKR¤?=

57Formatted nodes and coordinates listing

Gk­¢£±k³«=Gk­¢£±`­­°¢=
G£¬¢=¬­¢£±

At the end of the section the end marker is added, which in this solver example is as
follows:

bka|dbljbqov

The full set of commands to make this part of the output is shown in the following lines.

dbljbqov
A=bibjbkq=`lkkb`qfsfqfbp
A=bibjK=j^qboK=`lkkb`qfsfqfbp
Gª­­®=£ª£«±
==G£ª£«±¬³«=G£ª£«±«~²=G£ª£«±`­¬£¡
G£¬¢=£ª£«±
A=kla^i=`lloafk^qbp
A=klab=`lloaKJu=`lloaKJv=`lloaKJw
Gª­­®=¬­¢£±
G¤­°«~²=?BS§BNRKR¤BNRKR¤BNRKR¤?
==Gk­¢£±k³«=Gk­¢£±`­­°¢
G£¬¢
bka|dbljbqov

The result of the compilation is output to a file (project_name.dat) to be processed by the
solver program.

The first part of the section:

AJJJ
dbljbqov
A=bibjbkq=`lkkb`qfsfqfbp
A=bibjK=j^qboK=`lkkb`qfsfqfbp
=====N=N=TP=UV=UP
=====O=N=PV=RT=RO
=====P=N=NT=OT=OS
=====Q=R=N=P=R
=====R=R=P=NM=U
=====S=O=RT=TP=ST
=====K=K=K=K=K
=====K=K=K=K=K

58Formatted nodes and coordinates listing

=====K=K=K=K=K
===NTS=R=QN=PU=OQ

And the second part of the section:

A=kla^i=`lloafk^qbp
A=klab=`lloaKJu=`lloaKJv=`lloaKJw
=======N=RKRRNMO=RKRNMOM
=======O=RKRRNMO=RKRNMOM
=======P=QKSMOMQ=RKUOVVP
=======Q=QKSMOMQ=RKUOVVP
=======R=QKUUQPR=QKTPMNS
=======S=QKUUQPR=QKTPMNS
=======K=K=K
=======K=K=K
=======K=K=K
=====NNS=JRKNNRSR=PKTVRVO
bka|dbljbqov

If the solver module you are using needs a list of the nodes that have been assigned a
condition, for example, a neighborhood condition, you have to provide it as is explained in
the next example.

4.3.2 Elements, materials and connectivities listing

Now we want to output the desired results to the output file. The first line should be a title
or a label as this lets the solver know where a loop section begins and ends. The end of
this block of instructions will be signalled by the line END_GEOMETRY.

dbljbqov

The next two of lines give the user information about what types of commands follow.

Firstly, a title for the first subsection, ELEMENTAL CONNECTIVITIES:

A=bibjbkq^i=`lkkb`qfsfqfbp

followed by a header that preceeds the output list:

A=bibjK=j^qboK=`lkkb`qfsfqfbp

The next part of the code concerns the elements of the model with the inclusion of the
*loop instruction, followed in this case by the elems argument.

Gª­­®=£ª£«±

For each element in the model, GiD will output: its element number, by the action of the

59Elements, materials and connectivities listing

*elemsnum command, the material assigned to this element, using the *elemsmat
command, and the connectivities associated to the element, with the *elemsConec
command:

G£ª£«±¬³«=G£ª£«±«~²=G£ª£«±`­¬£¡=
G£¬¢=£ª£«±

You can use the swap parameter if you are working with quadratic elements and if the
listing mode of the nodes is non-hierarchical (by default, corner nodes are listed first and
mid nodes afterwards):

G£ª£«±¬³«=G£ª£«±«~²=G£ª£«±`­¬£¡E±µ~®F=
G£¬¢=£ª£«±

4.3.3 Nodes listing declaration

First, we set the necessary conditions, as was done in the previous section.

Gp£²=`­¬¢=p³°¤~¡£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F=
G^¢¢=`­¬¢=i§¬£J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F=
G^¢¢=`­¬¢=m­§¬²J`­¬±²°~§¬²±=G¬­¢£±=G­°ENI§¬²F=G­°EPI§¬²F=
kmobpZG`­¬¢k³«b¬²§²§£±

After the data initialization and declarations, the solver requires a list of nodes with
boundary conditions and the fields that have been assigned.

In this example, all the selected nodes will be output and the 3 conditions will also be
printed. The columns will be output with no apparent format.

Once again, the code begins with a subsection header for the solver program and a
commentary line for the user:

_lrka^ov=`lkafqflkp=
A=obpqof`qba=klabp

Then comes the first line of the output list, the header:

A=klab=`lab=mobp`ofmqba=s^irbp

The next part the loop instruction, in this case over nodes, and with the specification
argument *OnlyInCond, to iterate only over the entities that have the condition assigned.
This is the condition that has been set on the previous lines.

Gª­­®=¬­¢£±=Gl¬ª·f¬`­¬¢

The next line is the format command, followed by the lines with the commands to fill the
fields of the list.

G¤­°«~²=?BR§BN§BN§B¤B¤?=
Gk­¢£±k³«=G¡­¬¢ENI§¬²F=G¡­¬¢EPI§¬²F=Gy

60Nodes listing declaration

The *format command influence also includes the following two if sentences. If the
degrees of freedom field contains an integer equal or greater than 3, the number of
properties will be output.

G§¤Ed£¬a~²~Ea£¥°££±|c°££¢­«|k­¢£±I§¬²F[ZPF=
G¡­¬¢ERI§¬²F=Gy=
G£¬¢§¤

And if the value of the same field is equal to 5 the output will be a pair of zeros.

G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF=
M=M=Gy=
G£¬¢§¤

The next line ouputs the values contained in the second and fourth fields, both real
numbers.

G¡­¬¢EOI°£~ªF=G¡­¬¢EQI°£~ªF=Gy

In a similar manner to the previous if sentences, here are some lines of code which will
output the sixth condition field value if the number of degrees of freedom is equal or
greater than three, and will output a pair of zeros if it is equal to five.

G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²F[ZPF=
G¡­¬¢ESI°£~ªF=Gy=
G£¬¢§¤=
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF=
MKM=MKM=Gy=
G£¬¢§¤

Finally, to end the section, the *end command closes the previous *loop. The last line is
the label of the end of the section.

G£¬¢=
bka|_lrka^ov=`lkafqflkp=
AJJJ

The full set of commands included in this section are as follows:

_lrka^ov=`lkafqflkp
A=obpqof`qba=klabp
A=klab=`lab=mobp`ofmqba=s^irbp
Gª­­®=¬­¢£±=Gl¬ª·f¬`­¬¢
G¤­°«~²=?BR§BN§BN§B¤B¤?
===Gk­¢£±k³«=G¡­¬¢ENI§¬²F=G¡­¬¢EPI§¬²F=Gy

61Nodes listing declaration

G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²F[ZPF
G¡­¬¢ERI§¬²F=Gy
G£¬¢§¤
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF
M=M=Gy
G£¬¢§¤
G¡­¬¢EOI°£~ªF=G¡­¬¢EQI°£~ªF=Gy
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²F[ZPF
G¡­¬¢ESI°£~ªF=Gy
G£¬¢§¤
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF
MKM=MKM=Gy
G£¬¢§¤
G£¬¢
bka|_lrka^ov=`lkafqflkp
AJJJ

4.3.4 Elements listing declaration

First, we set the loop to the interval of the data.

*loop intervals

The next couple of lines indicate the starting of one section and the title of the example,
taken from the first field in the interval data with an abbreviation on the label. They are
followed by a comment explaining the type of data we are using.

LOADS

 TITLE: *IntvData(Charge_case)

$ LOAD TYPE

We begin by setting the condition as before. If one condition is assigned twice or more to
the same element without including the *CanRepeat parameter in the *Set Cond, the
condition will appear once; if the *CanRepeat parameter is present then the number of
conditions that will appear is the number of times it was assigned to the condition.

Gp£²=`­¬¢=c~¡£Ji­~¢=G£ª£«±=G`~¬o£®£~²

Then, a condition checks if any element exists in the condition.

G§¤E`­¬¢k³«b¬²§²§£±E§¬²F[MF

Next is a title for the next section, followed by a comment for the user.

62Elements listing declaration

afpqof_rqba=lk=c^`bp=
A=il^ap=afpqof_rqba=lk=bibjbkq=c^`bp

We assign the number of nodes to a variable.

A=krj_bo=lc=klabp=_v=c^`b=kladb=Z=O=
A=il^aba=c^`bp=^ka=clo`b=s^irbp=
Gª­­®=£ª£«±=Gl¬ª·f¬`­¬¢=
====bibjbkqZG£ª£«±¬³«EFI=`lkkb`qfs=G¥ª­ ~ª¬­¢£±
====G¡­¬¢ENF=G¡­¬¢ENF=G¡­¬¢EOF=G¡­¬¢EOF
G£¬¢=£ª£«±
bka|afpqof_rqba=lk=c^`bp=
G£¬¢§¤

The final section deals with outputting a list of the nodes and their conditions.

4.3.5 Materials listing declaration

This section deals with outputting a materials listing.

As before, the first lines must be the title of the section and a commentary:

j^qbof^i=molmboqfbp=
A=j^qbof^i=molmboqfbp=clo=jriqfi^jfk^qb

Next there is the loop sentence, this time concerning materials:

Gª­­®=«~²£°§~ª±

Then comes the line where the number of the material and its different properties are
output:

G«~²¬³«EF=Gj~²m°­®ENF=Gj~²m°­®EOF=Gj~²m°­®EPF=Gj~²m°­®EQF

Finally, the end of the section is signalled:

G£¬¢=«~²£°§~ª±
bka|j^qbof^i=molmboqfbp=
AJJJ

The full set of commands is as follows:

j^qbof^i=molmboqfbp
A=j^qbof^i=molmboqfbp=clo=jriqfi^jfk^qb
Gª­­®=«~²£°§~ª±
===G«~²¬³«EF=Gj~²m°­®ENF=Gj~²m°­®EOF=Gj~²m°­®EPF=Gj~²m°­®EQF
G£¬¢=«~²£°§~ª±

63Materials listing declaration

bka|j^qbof^i=molmboqfbp
AJJJ

The next section deals wth generating an elements listing.

4.3.6 Nodes and its conditions listing declaration

As for previous sections, the first thing to do set the conditions.

Gp£²=`­¬¢=m­§¬²Ji­~¢=G¬­¢£±

As in the previous section, the next loop will only be executed if there is a condition in the
selection.

G§¤E`­¬¢k³«b¬²§²§£±E§¬²F[MF

Here begins the loop over the nodes.

mrk`qr^i=lk=klabp=
Gª­­®=¬­¢£±=Gl¬ª·f¬`­¬¢
====Gk­¢£±k³«=G¡­¬¢ENF=G¡­¬¢EOF=Gy

The next *if sentences determine the output writing of the end of the line.

G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²F[ZPF=
G¡­¬¢EPF=Gy=
G£¬¢§¤=
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF=
M=M=Gy=
G£¬¢§¤=
G£¬¢=¬­¢£±

To end the section, once again you have to include the end label and the closing *endif.

bka|mrk`qr^i=lk=klabp=
G£¬¢§¤

Finally, a message is written if the value of the second field in the interval data section
inside the problem file is equal to "si" (yes).

G§¤E±²°¡~±£¡«®Ef¬²´a~²~EOFI?p§?FZZMF=
pbic|tbfdeq=
G£¬¢§¤

To signal the end of this part of the forces section, the following line is entered.

bka|il^ap

64Nodes and its conditions listing declaration

Before the end of the section it remains to tell the solver what the postprocess file will be.
This information is gathered from the *IntvData command. The argument that this
command receives (3) specifies that the name of the file is in the third field of the loop
iteration of the interval.

AJJJ=
Amlpqmol`bpp=cfib=cbjs=Z=Gf¬²´a~²~EPF

To end the forces interval loop the *end command is entered.

AJJJ=
G£¬¢=¬­¢£±

Finally, the complete file is ended with the sentence required by the solver.

bka|`^ipbc=AJJJ

The preceding section is compiled completely into the following lines:

Gp£²=`­¬¢=m­§¬²Ji­~¢=G¬­¢£±
G§¤E`­¬¢k³«b¬²§²§£±E§¬²F[MF
mrk`qr^i=lk=klabp
Gª­­®=¬­¢£±=Gl¬ª·f¬`­¬¢
======Gk­¢£±k³«=G¡­¬¢ENF=G¡­¬¢EOF=Gy
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²F[ZPF
G¡­¬¢EPF=Gy
G£¬¢§¤
G§¤Ed£¬a~²~Ea£¥°££±|c°££I§¬²FZZRF
M=M=Gy
G£¬¢§¤
G£¬¢
bka|mrk`qr^i=lk=klabp
G£¬¢§¤
G§¤E±²°¡~±£¡«®Ef¬²´a~²~EOFI?p§?FZZMF
pbic|tbfdeq
G£¬¢§¤
bka|il^ap
AJJJ
Amlpqmol`bpp=cfib
cbjs=Z=Gf¬²´a~²~EPF
AJJJ

65Nodes and its conditions listing declaration

G£¬¢=¬­¢£±
bka|`^ipbc
AJJJ

This is the end of the template file example.

66EXECUTING AN EXTERNAL PROGRAM

5 EXECUTING AN EXTERNAL PROGRAM

67

Once all the problem type files are finished (.cnd, .mat, .prb, .sim, .bas files), you can run
the solver. You may wish to run it directly from inside GiD.

To do so, it is necessary to create the file ®°­ ª£«|²·®£|¬~«£K ~² in the Problem Type
directory. This must be a shell script that can contain any type of information and that will
be different for every operating system. When you select the Calculate option in GiD
Preprocess this shell script is executed (see CALCULATE from Reference Manual).

Because the .bat file will be different depending on the operating system, it is possible to
create two files: one for Windows and another for Unix/Linux. The Windows file has to be
called: ®°­ ª£«|²·®£|¬~«£Kµ§¬K ~²X the Unix/Linux file has to be called:
®°­ ª£«|²·®£|¬~«£K³¬§¶K ~²K

If GiD finds a Kµ§¬K ~² or K³¬§¶K ~² file, the file ®°­ ª£«|²·®£|¬~«£K ~² will be ignored.
If a K ~² file exists in the problem type directory when choosing Start in the calculations
window, GiD will automatically write the analysis file inside the example directory assigning
the name ®°­¨£¡²|¬~«£K¢~² to this file (if there are more files, the names
®°­¨£¡²|¬~«£JNK¢~² ... are used). Next, this shell script will be executed. GiD will assign
three arguments to this script:

1st argument: ®°­¨£¡²|¬~«£ (name of the current project);
2nd argument: ¡Wy~y y¡y®°­¨£¡²|¬~«£K¥§¢ (path of the current project);
3rd argument: ¡Wy~y y¡y®°­ ª£«|²·®£|¬~«£K¥§¢ (path of the problem type
selected);

Among other utilities, this script can move or rename files and execute the process until it
finishes.

Note 1: This file must have the executable flag set (see the UNIX command chmod +x) in
UNIX systems.

Note 2: GiD sets as the current directory the model directory (example:
¡Wy£¶~«®ª£±y²£±²NK¥§¢F just before executing the .bat file. Therefore, the lines (¡¢=
A¢§°£¡²­°·) are not necessary in the scripts.
Note 3: In UNIX platforms check you have installed the shell you are using in the .unix.bat
script, there are more than one possibilities: bash, csh, tcsh, ...

The first line of the script specify the shell to be used, for example

@>L §¬L ~±¦
­°
@>L §¬L¡±¦

In Windows platforms, the command.exe provided by GiD is used instead the standard
cmd.exe or command.com

68Showing feedback when running the solver

5.1 Showing feedback when running the solver

The information about what is displayed when Output view: is pressed is also given here.
To determine what will be shown, the script must include a comment line in the following
form:

For Windows :

°£«=l³²®³²c§ª£W=BNKª­¥

For Linux/Unix:

@=l³²®³²c§ª£W=?ANKª­¥?

where "$1.log" means to display in that window a file whose name is: project_name.log.
The name can also be an absolute name like output.dat. If this line is omitted, when you
press Output view:, nothing will be displayed.

5.2 Commands accepted by the GiD command.exe

The keywords are as follows:

B
p¦§¤²
o£«
`¦¢§°=E`¢F
a£ª=Ea£ª£²£I=b°~±£F
`­®·
o£¬~«£=Eo£¬I=j­´£F
j©¢§°=Ej¢F
p£²
b¡¦­=E]£¡¦­F
f¤
`~ªª
d­²­
W
q·®£

Unknown instructions will be executed as from an external file.

Not all the possible parameters and modifiers available in the operating system are
implemented in the GiD executable command.exe.

Note: At the moment, command.exe is only used in Windows operating systems as an
alternative to command.com or cmd.exe. With the GiD command.exe some of the
disadvantages of Windows can be avoided (the limited length of parameters, temporary
use of letters of virtual units that sometimes cannot be eliminated, fleeting appearance of
the console window, etc).

If GiD finds the file command.exe located next to gid.exe , it will be used to interpret
the *.bat file of the problem type; if the file command.exe cannot be found, the *.bat file

69Commands accepted by the GiD command.exe

will be interpreted by the windows command.com.

If conflicts appear by the use of some instruction still not implemented in the GiD
command.exe , it is possible to rename the command.exe file, so that GiD does not find
it, and the operating system command.com is used.

%

Returns the value of a variable.

%number

%name%

Parameters

number

The number is the position (from 0 to 9) of one of the parameters which the *.bat file
receives.

name

The name of an environment variable. That variable has to be declared with the instruction
"set".

Note: GiD sends three parameters to the *.bat file: %1, %2, %3

%1 is the name of the current project (project_name)

%2 is the path of the current project (c:\a\b\c\project_name.gid)

%3 is path of the problem type (c:\a\b\c\problem_type_name.gid)

For example, if GiD is installed in ¡Wy¥§¢µ§¬I the "problemtype" name is ¡«~±O¢K¥§¢ and
the project is test.gid, located in ¡Wy²£«® (the project is a directory called
¡Wy²£«®y²£±²K¥§¢ with some files inside), parameters will have the following values:

BN=²£±²=
BO=¡Wy²£«®y²£±²K¥§¢=
BP=¡Wy¥§¢µ§¬y®°­ ª£«²·®£±y¡«~±O¢K¥§¢

Note: It is possible that the file and directory names of these parameters are in the short
mode Windows format. So, parameter %3 would be: ¡Wydfatfkymol_ib¼y`j^pOaKdfaK

Examples

£¡¦­=BN=[=BOyBNK²¶²=
£¡¦­=BqbjmB=[[=BNK²¶²

Shift

The shift command changes the values of parameters %0 to %9 copying each parameter
in the previous one. That is to say, value %1 is copied to %0, value %2 is copied to %1,
etc.

Shift

70Commands accepted by the GiD command.exe

Parameter

None.

Note: The shift command can be used to create a batch program that accepts more than
10 parameters. If it specifies more than 10 parameters in the command line, those that
appear after tenth (%9) will move to parameter %9 one by one.

Rem

Rem is used to include comments in a *.bat file or in a configuration file.

rem[comment]

Parameter

comment

Any character string.

Note: Some comments are GiD commands.

Chdir (Cd)

Changes to a different directory.

chdir[drive:path] [..]

-or-

cd[drive:path] [..]

Parameters

[drive:path]

Disk and path of the new directory.

[..]

Goes back one directory. For example if you are within the C:\WINDOWS\COMMAND>
directory this would take you to C:\WINDOWS>.

Note: When GiD calls the *.bat file, the path of the project is the current path, so it is not
necessary to use cd %2 at the beginning of the *.bat file.

Examples

¡¦¢§°=£Wy²«®=¡¢=KK

Delete (Del, Erase) Command used to delete files permanently from the computer.

delete[drive:][path] fileName [fileName]

Parameters

[drive:][path] fileName [fileName] Parameters that specify the location and the name of
the file that has to be erased from disk. Several file names can be given.

Note: Files will be eliminated although they have the hidden or read only flag. Use of

71Commands accepted by the GiD command.exe

wildcards is not allowed. For example del *.* is not valid. File names must be separated by
spaces and if the path contains blank spaces, the path should be inside inverted commas
(the short path without spaces can also be used).

Examples

¢£ª£²£=BOyBNy¤§ª£K¡~ª=
¢£ª=`Wy²«®y¤~K¢~²=`Wy²«®y¤ K¢~²=
¢£ª=?`Wym°­¥°~«=¤§ª£±y²£±²=QK²¶²?

Copy

Copies one or more files to another location.

copy source [+ source [+ ...]] destination

Parameters

source Specifies the file or files to be copied.

destination Specifies the filename for the new file(s).

To append files, specify a single file for destination, but multiple files for source (using the
file1 + file2 + file3 format).

Note: If the destination file already exists, it will be overwritten without prompting
whether or not you wish to overwrite it.

File names must be separated by spaces. If the destination only contains the path but not
the filename, the new name will be the same as the source filename.

Examples

¡­®·=¤NK²¶²=¤OK²¶²=
¡­®·=¤NK²¶²=¡Wy²«®=
°£«=§¤= ¢§°£¡²­°·=¡Wy²«®= £¶§±²±I= ¡Wy²«®y¤NK²¶²=µ§ªª= £= ¡°£~²£¢I=§¤=§²=¢­£±=
¬­²=£¶§±²I=¤§ª£=¡Wy²«®=µ§ªª= £=¡°£~²£¢K=
¡­®·=~K²¶²=H= K²¶²=H=¡K²¶²=~ ¡K²¶²

Rename (Ren, Move)

Used to rename files and directories from the original name to a new name.

rename[drive:][path] fileName1 fileName2

Parameter [drive:][path] fileName1 Specifies the path and the name of the file which is to
be renamed.

fileName2 Specifies the new name file.

Note: If the destination file already exists, it will be overwritten without prompting
whether or not you wish to overwrite it. Wildcards are not accepted (*,?), so only one file
can be renamed every time. Note that you cannot specify a new drive for your destination.
A directory can be renamed in the same way as if it was a file.

72Commands accepted by the GiD command.exe

Examples

o£¬~«£=¤~K²¶²=¤~K¢~²=
o£¬~«£=?¡Wym°­¥°~«=c§ª£±y¤~K²¶²?=¡Wy²«®y¤~K²¶²=
o£¬~«£=¡Wy²£±²K¥§¢=¡Wy²£±²OK¥§¢

Mkdir (md)

Allows you to create your own directories.

mkdir[drive:]pathmd [drive:]path

Parameter

drive: Specifies the drive where the new directory has to be created.

path Specifies the name and location of the new directory. The maximum length of the
path is limited by the file system.

Note: mkdir can be used to create a new path with many new directories.

Examples

«©¢§°=£Wy²«®O=
«©¢§°=¢Ny¢Oy¢P

Set

Displays, sets, or removes Windows environment variables.

set variable=[string]

Parameters

variable Specifies the environment-variable name.

string Specifies a series of characters to assign to the variable.

Note: The set command creates variables which can be used in the same way as the
variables %0 to %9. Variables %0 to %9 can be assigned to new variables using the set
command.

To get the value of a variable, the variable has to be written inside two % symbols. For
example, if the environment-variable name is V1, its value is %V1%. Variable names are
not case-sensitive.

Examples

±£²= ~±£¬~«£=Z=BN=
±£²=´N=Z=«·=²£¶²

Echo (@echo)

Displays messages.

echo [message]

73Commands accepted by the GiD command.exe

Parameters

message Specifies the text that will be displayed in the screen.

Note: The message will not be visible because the console is not visible, since GiD hides
it.Therefore, this command is only useful if the output is redirected to a file (using > or
>>). The symbol > sends the text to a new file, and the symbol >> sends the text to a file
if it already exists. The if and echo commands can be used in the same command line.

Examples

b¡¦­=BN=[=­³²K²¶²=
b¡¦­=B®~²¦B=[[=­³²K²¶²=
f¤=k­²=b¶§±²=BOyBNK¤ª~´§~K°£±=b¡¦­=?m°­¥°~«=¤~§ª£¢?=[[=BOyBNK£°°

If

Executes a conditional sentence. If the specified condition is true, the command which
follows the condition will be executed; if the condition is false, the next line is ignored.

if[not] exist fileName command
if [not] string1==string2 command
if[not] errorlevel number command

Parameters

not Specifies that the command has to be executed only if the condition is false.

exist file Returns true if file exists.

command Is the command that has to be executed if the condition returns true.

string1==string2 Returns true if string1 and string2 are equal. It is possible to compare
two strings, or variables (for example, %1).

errorlevel number Returns true if the last program executed returned a code equal to or
bigger than the number specified.

Note: Exist can also be used to check if a directory exists.

Examples

f¤=£¶§±²=±®¦£°£K§¥±=£¡¦­=c§ª£=£¶§±²±=[[=­³²K²¶²=
§¤=¬­²=£¶§±²=²£±²K¥§¢=£¡¦­=a§°=¢­£±=¬­²=£¶§±²=[[=­³²K²¶²=
§¤=BN=ZZ=²£±²=£¡¦­=b¯³~ª=BN=[[=­³²K²¶²

Call

Executes a new program.

call[drive:][path] file [parameters]

Parameter

[drive:][path] file Specifies the location and the name of the program that has to be

74Commands accepted by the GiD command.exe

executed.

parameters Parameters required by the program executed.

Note: The program can be *.bat file, a *.exe file or a *.com file. If the program does a
recursive call, some condition has to be imposed to avoid an endless curl.

Examples

¡~ªª=²£±²K ~²=BN=
¡~ªª=¥§¢K£¶£=J¬=Jm­±²o£±³ª²±q­_§¬~°·=BNK¤ª~´§~K°£±=BNK¤ª~´§~K §¬

Goto

The execution jumps to a line identified by a label.

goto label

Parameter

label It specifies a line of the *.bat file where the execution will continue. That label must
exist when the Goto command is executed. A label is a line of the *.bat file and starts with
(:). Goto is often used with the command if, in order to execute conditional operations.
The Goto command can be used with the label :EOF to make the execution jump to the
end of the *.bat file and finish.

Note: The label can have more than eight characters and there cannot be spaces between
them. The label name is not case-sensitive.

Example

¥­²­=Wblc
§¤=£¶§±²=BNK£°°=¥­²­=£¬¢=
KKK=
W£¬¢

:

Declares a label.

:labelName

Parameter

labelName A string which identifies a line of the file, so that the Goto command can jump
there. The label line will not be executed.

Note: The label can have more than eight characters and there cannot be spaces between
them. The label name is not case-sensitive.

Examples

W«·|ª~ £ª=
W£¬¢

75Commands accepted by the GiD command.exe

Type

Displays the contents of text files.

type[drive:][path] fileName

Parameters

[drive:][path] fileName Specifies the location and the name of the file to be displayed. If
the file name contains blank spaces it should be inside inverted commas ("file name").

Note: The text will not be visible because the console is not visible, since GiD hides it
Therefore, this command is only useful if the output is redirected to a file (using > or >>).
The symbol > sends the text to a new file, and the symbol >> sends the text to a file if it
already exists. It is recommended to use the copy command instead of type.

In general, the type command should not be used with binary files.

Examples

²·®£=BOyBNK¢~²=[=BOyBNK²¶²

5.3 Managing errors

A line of code like

For Windows

°£«=b°°­°c§ª£W=BNK£°°

For Linux/UNIX

@=b°°­°c§ª£W=?ANK£°°?

included in the .bat file means that the given filename is the error file. At the end of the
execution of the .bat file, if the errorfile does not exist or is zero, execution is considered
to be successful. If not, an error window appears and the contents of the error file are
considered to be the error message. If this line exists, GiD will delete this file just before
calculating to avoid errors with previous calculations.

A comment line like

°£«=t~°¬§¬¥c§ª£W=BNKµ°¬

or

@=t~°¬§¬¥c§ª£W=?ANKµ°¬?

included in the .bat file means that the given filename is the warning file. This file stores
the warnings that may appear during the execution of the .bat file.

5.4 Examples

Here are two examples of easy scripts to do. One of them is for Unix/Linux machines and
the other one is for MS-Dos or Windows.

76Examples

UNIX/Linux example:

@>L §¬L ~±¦
 ~±£¬~«£=Z=AN=
¢§°£¡²­°·=Z=AO=
m°­ ª£«a§°£¡²­°·=Z=AP
@=l³²®³²c§ª£W=?ANKª­¥?=IT IS USED BY GiD
@=b°°­°c§ª£W=?ANK£°°?=IT IS USED BY GiD
°«=J¤=?A ~±£¬~«£K¤ª~´§~K°£±?

"Am°­ ª£«a§°£¡²­°·L«·®°­¥°~«?=?A ~±£¬~«£?
«´=?A ~±£¬~«£K°£±³ª²±?=?A ~±£¬~«£K®­±²K°£±?

MS-DOS/Windows example:

°£«= ~±£¬~«£ZBN=JUST INFORMATIVE
°£«=¢§°£¡²­°·ZBO=JUST INFORMATIVE
°£«=m°­ ª£«a§°£¡²­°·ZBP=JUST INFORMATIVE
°£«=l³²®³²c§ª£W=BNKª­¥=IT IS USED BY GiD
°£«=b°°­°c§ª£W=BNK£°°=IT IS USED BY GiD
¢£ª=BNK¤ª~´§~K°£±BPy«·®°­¥°~«=BN
«­´£=BNK®­±²=BNK¤ª~´§~K°£±

6 POSTPROCESS DATA FILES

77

In GiD Postprocess you can study the results obtained from a solver program. The solver
and GiD Postprocess communicate through the transfer of files. The solver program has to
write the results to a file that must have the extension .post.res, or the old .flavia.res, and
its name must be the project name.

The solver program can also send the postprocess mesh to GiD (though this is not
mandatory), where it should have the extension .post.msh, or the old version .flavia.msh.
If this mesh is not provided by the solver program, GiD uses the preprocess mesh in
Postprocess.

The extensions .msh and .res are also allowed, but only files with the extensions .post.res
or .flavia.res - and potentially .post.msh or .flavia.msh - will automatically be read by GiD
when postprocessing the GiD project.

Postprocessing data files are ASCII files, and can be separated into two categories:

Mesh Data File: ®°­¨£¡²|¬~«£K®­±²K«±¦ (or ®°­¨£¡²|¬~«£K¤ª~´§~K«±¦) for volume
and surface (3D or 2D) mesh information, and
Results Data File: ®°­¨£¡²|¬~«£K®­±²K°£± (or ®°­¨£¡²|¬~«£K¤ª~´§~K°£±) for results
information.

Note: ProjectName.post.msh, or the old ProjectName.flavia.msh, handles meshes of
different element types: points, lines, triangles, quadrilaterals, tetrahedra and hexahedra.
The old format, which only handles one type of element per file, is still supported inside
GiD (see Old postprocess mesh format).

If a project is loaded into GiD, when changing to GiD Postprocess it will look for
ProjectName.post.res, or the old ProjectName.flavia.res. If a mesh information file with the
name ProjectName.post.msh, or the old ProjectName.flavia.msh is present, it will also be
read, regardless of the information available from GiD Preprocess.

ProjectName.post.msh (or the old ProjectName.flavia.msh): This file should

78POSTPROCESS DATA FILES

contain nodal coordinates of the mesh and its nodal connectivities as well as the material
of each element. At the moment, only one set of nodal coordinates can be entered.
Different kinds of elements can be used but separated into different sets. If no material
is supplied, GiD takes the material number to be equal to zero.
ProjectName.post.res (or the old ProjectName.flavia.res): This second file must
contain the nodal or gaussian variables. GiD lets you define as many nodal variables as
desired, as well as several steps and analysis cases (limited only by the memory of the
machine). The definitions of the Gauss points and the results defined on these points
should also be written in this file.

The files are created and read in the order that corresponds to the natural way of solving a
finite element problem: mesh, surface definition and conditions and finally, evaluation of
the results. The format of the read statements is normally free, i.e. it is necessary only to
separate them by spaces.

Thus, files can be modified with any format, leaving spaces between each field, and the
results can also be written with as many decimal places as desired. Should there be an
error, the program warns the user about the type of mistake found.

GiD reads all the information directly from the preprocessing files whenever possible in
order to gain efficiency.

6.1 Postprocess results format: ProjectName.post.res

Note: The new postprocess results format requires GiD version 6.1.4b or higher.

Note: Code developers can download the GiDpost tool from the GiD web page
(http://www.gidhome.com/gid-plus/tools/gidpost/); this is a C/C++/Fortran library for
creating postprocess files for GiD in both ASCII and compressed binary format.

This is the ASCII format description:

The first line of the files with results written in this new postprocess format should be:

d§a=m­±²=o£±³ª²±=c§ª£=NKM

Comment lines are allowed and should begin with a '#'. Blank lines are also allowed.

Results files can also be included with the keyword include, for instance:

§¬¡ª³¢£=?j·=l²¦£°=o£±³ª²±=c§ª£?

This is useful, for instance, for sharing several GaussPoints definitions and
ResultRangeTable among different analyses.

This 'include' should be outside the Blocks of information.

There are several types of Blocks of information, all of them identified by a keyword:

GaussPoints: Information about gauss points: name, number of gauss points, natural
coordinates, etc.;

79Postprocess results format: ProjectName.post.res

ResultRangesTable: Information for the result visualization type Contour Ranges:
name, range limits and range names;
Result: Information about a result: name, analysis, analysis/time step, type of result,
location, values;
ResultGroup: several results grouped in one block. These results share the same
analysis, time step, and location (nodes or gauss points).

6.1.1 Gauss Points

If Gauss points are to be included, they must be defined before the Result which uses
them. Each Gauss points block is defined between the lines GaussPoints and End
GaussPoints.

The structure is as follows, and should:

Begin with a header that follows this model:

GaussPoints "gauss_points_name" Elemtype my_type "mesh_name"

where

GaussPoints, elemtype: are not case-sensitive;
?¥~³±±|®­§¬²±|¬~«£?W is a name for the gauss points set, which will be used as
reference by the results that are located on these gauss points;
«·|²·®£W decribes which element type these gauss points are for, i.e. =m­§¬²I=
i§¬£~°I=q°§~¬¥ª£I=n³~¢°§ª~²£°~ªI=q£²°~¦£¢°~=­°=e£¶~¦£¢°~ ;
?«£±¦|¬~«£?W is an optional field. If this field is missing, the gauss points are
defined for all the elements of type my_type. If a mesh name is given, the gauss
points are only defined for this mesh.

Be followed by the gauss points properties:

Number of Gauss Points: number_gauss_points_per_element

Nodes included

Nodes not included

Natural Coordinates: Internal

Natural Coordinates: Given

natural_coordinates_for_gauss_point_1 . . . natural_coordinates_for_gauss_point_n

where

Number of Gauss Points: number_gauss_points_per_element: is not case-sensitive
and is followed by the number of gauss points per element that defines this set. If
Natural Coordinates: is set to Internal, number_gauss_points_per_element should be
one of:
1, 3, 6 for Triangles;
1, 4, 9 for Quadrilaterals;
1, 4, 10 for Tetrahedra;

80Gauss Points

1, 8, 27 for Hexahedra;
1, 6 for Prisms;
1, 5 for Pyramids; and
1, ... n points equally spaced over lines.

For triangles and quadrilaterals the order of the gauss points with Internal natural
coordinates will be this:

Internal coordinates:

(0, 0)

Internal coordinates:

a=0.57735027

(-a,-a) (a,-a)

(a, a) (-a, a)

Internal coordinates:

a=0.77459667

(-a,-a) (a,-a) (a, a)

(-a, a) (0,-a) (a, 0)

(0, a) (-a, 0) (0, 0)

Gauss Points positions of the quadrature of Gauss-Legendre Quadrilaterals

Internal coordinates:

a=1/3

(a, a)

Internal coordinates:

 a=1/2

(a, 0) (a, a) (0, a)

Internal coordinates:

a=0.09157621
b=0.81684757

c=0.44594849
d=0.10810301

(a, a) (b, a) (a, b)

(c, d) (c, c) (d, c)

Gauss Points positions of the quadrature of Gauss for Triangles

For tetrahedra the order of the Internal Gauss Points is this:

81Gauss Points

Internal coordinates:

a=(5+3*sqrt(5))/20=0.585410196624968

b=(5-sqrt(5))/20 =0.138196601125010

(b, b, b) (a, b, b) (b, a, b) (b, b, a)

Internal coordinates:

a=0.108103018168070

b=0.445948490915965

c=0.816847572980459

(a, a, a) (c, a, a) (a, c, a) (a, a, c)

(b, a, a) (b, b, a) (a, b, a)

(a, a, b) (b, a, b) (a, b, b)

For hexahedra the order of the Internal Gauss Points is this:

Internal coordinates:

a=0.577350269189626

(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a)

(-a,-a, a) (a,-a, a) (a, a, a) (-a, a, a)

Internal coordinates:

 a = 0.774596669241483

(-a,-a,-a) (a,-a,-a) (a, a,-a) (-a, a,-a)

(-a,-a, a) (a,-a, a) (a, a, a) (-a, a, a)

(0,-a,-a) (a, 0,-a) (0, a,-a) (-a, 0,-a)

(-a,-a, 0) (a,-a, 0) (a, a, 0) (-a, a, 0)

(0,-a, a) (a, 0, a) (0, a, a) (-a, 0, a)

(0, 0,-a)

(0,-a, 0) (a, 0, 0) (0, a, 0) (-a, 0, 0)

(0, 0, a)

(0, 0, 0)

82Gauss Points

For prisms the order of the Internal Gauss Points is this:

Internal coordinates:

a=1/6=0.166666666666666

b=4/6=0.666666666666666

c=1/2-1/(2sqrt(3)) =0.211324865405187

d=1/2+1/(2sqrt(3))=0.788675134594812

(a, a, c) (b, a, c) (a, b, c)

(a, a, d) (b, a, d) (a, b, d)

For pyramids the order of the Internal Gauss Points will be this:

Internal coordinates:

a=8.0*sqrt(2.0/15.0)/ 5.0 =0.584237394672177

b=-2/3 =-0.666666666666666

c=2/5 = 0.4

(-a, -a, b)

(a, -a, b)

(a, a, b)

(-a, a, b)

(0.0, 0.0, c)

The given natural coordinates for Gauss Points should range:

between 0.0 and 1.0 for Triangles, Tetrahedra and Prisms, and

83Gauss Points

between -1.0 and 1.0 for Quadrilaterals, Hexahedra and Pyramids.

Note: If the natural coordinates used are the internal ones, almost all the Results
visualization possibilities will have some limitations for tetrahedra and hexahedra with
more than one gauss points. If the natural coordinates are given, these limitations are
extended to those elements with number_gauss_points_per_element not included in the
list written above.

Nodes Included / Nodes not Included: are not case-sensitive, and are only necessary
for gauss points on Linear elements which indicate whether or not the end nodes of
the Linear element are included in the number_gauss_points_per_element count.

Nodes included Nodes not included

The default value is nodes not included

Note: By now, Natural Coordinates for linear elements cannot be "Given"

Natural Coordinates: Internal / Natural Coordinates: Given: are not case-sensitive,
and indicate whether the natural coordinates are calculated internally by GiD, or are
given in the following lines. The natural coordinates should be written for each line
and gauss point.

End with this tail:

End GaussPoints

where End GaussPoints: is not case-sensitive.

Here is an example of results on Gauss Points:

d~³±±m­§¬²±=?_­~°¢=¥~³±±=§¬²£°¬~ª?=bª£«q·®£=q°§~¬¥ª£=? ­~°¢?=
==k³« £°=l¤=d~³±±=m­§¬²±W=P=
==k~²³°~ª=`­­°¢§¬~²£±W=§¬²£°¬~ª=
£¬¢=¥~³±±®­§¬²±

Internal Gauss points

The following Internal gauss points are automatically defined.

Results can use this names without explicitly define them with a GaussPoints / End
GaussPoints statement.

GP_POINT_1

GP_LINEAR_1

GP_TRIANGLE_1 GP_TRIANGLE_3 GP_TRIANGLE_6

84Gauss Points

GP_QUADRILATERAL_1 GP_QUADRILATERAL_4 GP_QUADRILATERAL_9

GP_TETRAHEDRA_1 GP_TETRAHEDRA_4 GP_TETRAHEDRA_10

GP_HEXAHEDRA_1 GP_HEXAHEDRA_8 GP_HEXAHEDRA_27

GP_PRISM_1 GP_PRISM_6

GP_PIRAMID_1 GP_PIRAMID_5

GP_SPHERE_1

GP_CIRCLE_1

6.1.2 Result Range Table

If a Result Range Table is to be included, it must be defined before the Result which uses
it.

Each Result Range Table is defined between the lines ResultRangesTable and End
ResultRangesTable.

The structure is as follows and should:

Begin with a header that follows this model:

ResultRangesTable "ResultsRangeTableName"

where ResultRangesTable: is not case-sensitive; "ResultsRangeTableName": is a name for
the Result Ranges Table, which will be used as a reference by the results that use this
Result Ranges Table.

Be followed by a list of Ranges, each of them defined as follows:

Min_Value - Max_Value: "Range Name"

where

Min_value : is the minimum value of the range, and may be void if the Max_value
is given. If void, the minimum value of the result will be used;
Max_value : is the maximum value of the range, and may be void if the Min_value
is given. If void, the maximum value of the result will be used;
"Range Name" : is the name of the range which will appear on legends and labels.

End with this tail:

End ResultRangesTable

where

End ResultRangesTable: is not case-sensitive.

Here are several examples of results range tables:

Ranges defined for the whole result:

o£±³ª²o~¬¥£±q~ ª£=?j·=²~ ª£?
@=~ªª=²¦£=°~¬¥£±=~°£=«§¬=YZ=°£±=Y=«~¶=£¶¡£®²

85Result Range Table

@=²¦£=ª~±²=°~¬¥£=§±=«§¬=YZ=°£±=YZ=«~¶
======J=MKPW=?i£±±?
==MKP=J=MKTW=?k­°«~ª?
==MKT=J=W=?q­­=«³¡¦?
b¬¢=o£±³ª²o~¬¥£±q~ ª£

Just a couple of ranges:

o£±³ª²o~¬¥£±q~ ª£=?j·=²~ ª£?
==MKP=J=MKTW=?k­°«~ª?
==MKT=J=MKVW=?q­­=«³¡¦?
b¬¢=o£±³ª²o~¬¥£±q~ ª£

Or using the maximum of the result:

o£±³ª²o~¬¥£±q~ ª£=?j·=²~ ª£?
==MKP=J=MKTW=?k­°«~ª?
==MKT=J=W=?q­­=«³¡¦?
b¬¢=o£±³ª²o~¬¥£±q~ ª£

6.1.3 Result

Each Result block is identified by a Result header, followed by several optional properties:
component names, ranges table, and the result values, defined by the lines Values and
End Values.

The structure is as follows and should:

Begin with a header that follows this model:

Result "result name" "analysis name" step_value my_result_type my_location "location
name"

where

Result: is not case-sensitive;
"°£±³ª²=¬~«£": is a name for the Result, which will be used for menus; if the result
name contains spaces it should be written between "" or between {}.
" ~¬~ª·±§±=¬~«£": is the name of the analysis of this Result, which will be used for
menus; if the analysis name contains spaces it should be written between "" or
between {}.
±²£®|´~ª³£W is the value of the step inside the analysis "analysis name";
«·|²·®£W describes the type of the Result. It should be one of the following:

p¡~ª~°W=one component per result
=s£¡²­°W=two, three or four components for result: x, y, z and (signed) modulus
=j~²°§¶W three components for 2D matrices, six components for 3D matrices
=mª~§¬a£¤­°«~²§­¬j~²°§¶W=four components: Sxx, Syy, Sxy, Szz

86Result

=j~§¬j~²°§¶W the three main unitary eigen vectors vectors (three components
each) and three eigen values of the matrix
=i­¡~ª^¶£±W three euler angles to specify the local axis
=`­«®ª£¶p¡~ª~°W=two components to specify a + b · i
=`­«®ª£¶s£¡²­°W= four components for 2D complex vectors, six or nine
components for 3D vectors: rX iX rY iY rZ iZ |r| |i| |vector| --> to specify the
vector (rX + iX, rY + iY, rZ + iZ)

 Look at the customization and reference manuals to get mor information on how to
specify complex numbers for GiD.

«·|ª­¡~²§­¬W is where the Result is located. It should be one of the following:
l¬k­¢£±I= l¬d~³±±m­§¬²± . If the Result is l¬d~³±±m­§¬²±I a ?ª­¡~²§­¬=
¬~«£? should be entered;
"ª­¡~²§­¬=¬~«£": is the name of the Gauss Points on which the Result is defined.

Note: Results can be grouped into 'folders' like in the following picture

Results grouped into folders

by just grouping of results using slahes in the result names:

Result "j£¡¦~¬§¡~ªLLm°£±±³°£±LLt~²£°=®°£±±³°£” "Time analysis” 60 …
Result "m¦·±§¡~ªLLp~²³°~²§­¬” "Time analysis” 60 Scalar OnNodes
and so on...

Be followed (optionally) by result properties:

ResultRangesTable "Name of a result ranges table"

ComponentNames "Name of Component 1", "Name of Component 2"

Unit "result unit"

where

ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive,

87Result

followed by the name of the previously defined Result Ranges Table, which will be
used if the Contour Ranges result visualization is chosen (see Result Range Table
-pag. 84-);
ComponentNames "Name of Component 1", "Name of Component 2": (optional) is
not case-sensitive, followed by the names of the components of the results which will
be used in GiD. Missing components names will be automatically generated. The
number of Component Names are:
One for a Scalar Result
Three for a Vector Result
Six for a Matrix Result
Four for a PlainDeformationMatrix Result
Six for a MainMatrix Result
Three for a LocalAxes Result
Two for a ComplexScalar Result
Six or nine for ComplexScalar

Unit: the unit of the result.

End with the result values:

Values

¬­¢£|­°|£ª£«|¬³« £°=¡­«®­¬£¬²|N|´~ª³£=¡­«®­¬£¬²|O|´~ª³£=
K=K=K=¬­¢£|­°|£ª£«|¬³« £°=¡­«®­¬£¬²|N|´~ª³£=¡­«®­¬£¬²|O|´~ª³e
End Values

where

Values: is not case-sensitive, and indicates the beginning of the results values
section;
The lines
node_or_elem_number component_1_value component_2_value
 . . .
node_or_elem_number component_1_value component_2_value

are the values of the result at the related 'node_or_elem_number'.

The number of results values are limited thus:

If the Result is located OnNodes, they are limited to the number of nodes defined
in ProjectName.flavia.msh.
If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP"
are defined for the mesh "My mesh", the limit is the number of gauss points in "My
GP" multiplied by the number of elements of the mesh "My mesh".

For results in gauss points, each element must have 'ngauss' lines of results.

For example, if the number of gauss points is 3, then for an element, 3 lines of gauss point
result must appear.

s~ª³£±
N=NKNRR=

88Result

==OKV=
==PKVRR
b¬¢=s~ª³£±

Holes are allowed in any result. The element nodes with no result defined will not be
drawn, i.e. they will appear transparent.

The number of components for each Result Value are:

for Scalar results: one component result_number_i scalar_value
for Vector results: three components, with an optional fourth component for
signed modules result_number_i x_value y_value z_value result_number_i
x_value y_value z_value signed_module_value
for Matrix results: three components (2D models) or six components (3D
models)2D: result_number_i Sxx_value Syy_value Sxy_value3D: result_number_i
Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value
for PlainDeformationMatrix results: four components result_number_i Sxx_value
Syy_value Sxy_value Szz_value
for MainMatrix results: twelve components result_number_i Si_value Sii_value
Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value
Viiix_value Viiiy_value Viiiz_value
for LocalAxes results: three components describing the Euler angles
result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value. The
local axes willl be calculated like this:

s£¡²­°uE¶F=Z=¡­±`G¡­±^=J=¡­±_G±§¬^G±§¬`
s£¡²­°uE·F=Z=J±§¬`G¡­±^=J=¡­±_G±§¬^G¡­±`
s£¡²­°uE¸F=Z=±§¬_G±§¬^
s£¡²­°vE¶F=Z=¡­±`G±§¬^=J=¡­±_G¡­±^G±§¬`
s£¡²­°vE·F=Z=J±§¬`G±§¬^=J=¡­±_G¡­±^G¡­±`
s£¡²­°vE¸F=Z=J±§¬_G¡­±^
s£¡²­°wE¶F=Z=±§¬`G±§¬_
s£¡²­°wE·F=Z=¡­±`G±§¬_
s£¡²­°wE¸F=Z=¡­±_

µ¦£°£

¡­±^Z¡­±E£NF
±§¬^Z±§¬E£NF
¡­±_Z¡­±E£OF
±§¬_Z±§¬E£OF
¡­±`Z¡­±E£PF
±§¬`Z±§¬E£PF

89Result

and

£NZ£³ª£°=~¬¥ª£=N
£OZ£³ª£°=~¬¥ª£=O
£PZ£³ª£°=~¬¥ª£=P

Look for LocalAxesDef(EulerAngles) at Specific commands -pag. 38-for a more detailed
explanation.

 for ComplexScalar results: two components to specify a + b · i
 for ComplexVector results: four components for 2D complex vectors, six or nine
components for 3D vectors: rX iX rY iY rZ iZ |r| |i| |vector| --> to specify the
vector (rX + iX, rY + iY, rZ + iZ)

End Values: is not case-sensitive, and indicates the end of the results values section.

Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are
calculated by GiD, which represents the eigen values & vectors of the matrix results, and
which are ordered according to the eigen value.

,

6.1.4 Results example

Here is an example of results for the table in the previous example (see Mesh example
-pag. 101-):

d§a=m­±²=o£±³ª²±=c§ª£=NKM

d~³±±m­§¬²±=?_­~°¢=¥~³±±=§¬²£°¬~ª?=bª£«q·®£=q°§~¬¥ª£=? ­~°¢?
==k³« £°=l¤=d~³±±=m­§¬²±W=P
==k~²³°~ª=`­­°¢§¬~²£±W=§¬²£°¬~ª
£¬¢=¥~³±±®­§¬²±

d~³±±m­§¬²±=?_­~°¢=¥~³±±=¥§´£¬?=bª£«q·®£=q°§~¬¥ª£=? ­~°¢?
==k³« £°=l¤=d~³±±=m­§¬²±W=P
==k~²³°~ª=`­­°¢§¬~²£±W=d§´£¬
======MKO=MKO
======MKS=MKO
======MKO=MKS
b¬¢=¥~³±±®­§¬²±

d~³±±m­§¬²±=?_­~°¢=£ª£«£¬²±?=bª£«q·®£=q°§~¬¥ª£=? ­~°¢?
==k³« £°=l¤=d~³±±=m­§¬²±W=N
==k~²³°~ª=`­­°¢§¬~²£±W=§¬²£°¬~ª

90Results example

£¬¢=¥~³±±®­§¬²±

d~³±±m­§¬²±=?i£¥±=¥~³±±=®­§¬²±?=bª£«q·®£=i§¬£~°
==k³« £°=l¤=d~³±±=m­§¬²±W=R
==k­¢£±=§¬¡ª³¢£¢
==k~²³°~ª=`­­°¢§¬~²£±W=f¬²£°¬~ª
b¬¢=d~³±±®­§¬²±&

o£±³ª²o~¬¥£±q~ ª£=?j·=²~ ª£?
@=£ª=³ª²§«­=°~¬¥­=£±=«§¬=YZ=°£±=YZ=«~¶
======J=MKPW=?i£±±?
==MKP=J=MKVW=?k­°«~ª?
==MKV=J=NKOW=?q­­=«³¡¦?
b¬¢=o£±³ª²o~¬¥£±q~ ª£

o£±³ª²= ?d~³±±= £ª£«£¬²?= ?i­~¢= ^¬~ª·±§±?=N= p¡~ª~°= l¬d~³±±m­§¬²±= ?_­~°¢=
£ª£«£¬²±?
s~ª³£±
====R=MKMMMMMbHMM=
====S=MKOMURRbJMQ=
====T=MKPRRNTbJMQ=
====U=MKQSMVUbJMQ=
====V=MKRQPTTbJMQ=
===NM=MKSMTOUbJMQ=
===NN=MKSRPOUbJMQ=
===NO=MKSUPPObJMQ=
===NP=MKSVVPNbJMQ=
===NQ=MKTMQORbJMQ=
===NR=MKTMQRObJMQ=
===NS=MKRNOOQbJMQ=
===NT=MKPOVNTbJMQ=
===NU=MKNRNVMbJMQ=
===NV=JMKPOQNRbJMR=
===OM=JMKOOVMPbJMQ=
===ON=JMKOOVNVbJMQ=
===OO=JMKOOOUPbJMQ=
b¬¢=s~ª³£±

91Results example

o£±³ª²=?a§±®ª~¡£«£¬²±?=?i­~¢=^¬~ª·±§±?=N=s£¡²­°=l¬k­¢£±
o£±³ª²o~¬¥£±q~ ª£=?j·=²~ ª£?
`­«®­¬£¬²k~«£±=?uJa§±®ª?I=?vJa§±®ª?I=?wJa§±®ª?
s~ª³£±
====N=MKM=MKM=MKM
====O=JMKN=MKN=MKR
====P=MKM=MKM=MKU
====Q=JMKMQ=MKMQ=NKM
====R=JMKMR=MKMR=MKT
====S=MKM=MKM=MKM
====T=JMKMQ=JMKMQ=NKM
====U=MKM=MKM=NKO
====V=JMKN=JMKN=MKR
===NM=MKMR=MKMR=MKT
===NN=JMKMR=JMKMR=MKT
===NO=MKMQ=MKMQ=NKM
===NP=MKMQ=JMKMQ=NKM
===NQ=MKMR=JMKMR=MKT
===NR=MKM=MKM=MKM
===NS=MKN=MKN=MKR
===NT=MKM=MKM=MKU
===NU=MKM=MKM=MKM
===NV=MKN=JMKN=MKR
b¬¢=s~ª³£±

o£±³ª²=?d~³±±= ¢§±®ª~¡£«£¬²±?=?i­~¢=^¬~ª·±§±?=N=s£¡²­°= l¬d~³±±m­§¬²±=?_­~°¢=
¥~³±±=¥§´£¬?
s~ª³£±
====R=MKN=JMKN=MKR
=========MKM=MKM=MKU
=========MKMQ=JMKMQ=NKM
====S=MKM=MKM=MKU
========JMKN=JMKN=MKR
========JMKMQ=JMKMQ=NKM
====T=JMKN=MKN=MKR
=========MKM=MKM=MKU

92Results example

========JMKMQ=MKMQ=NKM
====U=MKM=MKM=MKU
=========MKN=MKN=MKR
=========MKMQ=MKMQ=NKM
====V=MKMQ=MKMQ=NKM
=========MKN=MKN=MKR
=========MKMR=MKMR=MKT
===NM=MKMQ=MKMQ=NKM
=========MKMR=MKMR=MKT
========JMKMQ=MKMQ=NKM
===NN=JMKMQ=JMKMQ=NKM
========JMKN=JMKN=MKR
========JMKMR=JMKMR=MKT
===NO=JMKMQ=JMKMQ=NKM
========JMKMR=JMKMR=MKT
=========MKMQ=JMKMQ=NKM
===NP=JMKN=MKN=MKR
========JMKMQ=MKMQ=NKM
========JMKMR=MKMR=MKT
===NQ=JMKMR=MKMR=MKT
========JMKMQ=MKMQ=NKM
=========MKMR=MKMR=MKT
===NR=MKN=JMKN=MKR
=========MKMQ=JMKMQ=NKM
=========MKMR=JMKMR=MKT
===NS=MKMR=JMKMR=MKT
=========MKMQ=JMKMQ=NKM
========JMKMR=JMKMR=MKT
===NT=MKM=MKM=MKU
========JMKMQ=JMKMQ=NKM
========JMKMQ=MKMQ=NKM
===NU=MKM=MKM=MKU
=========MKMQ=MKMQ=NKM
=========MKMQ=JMKMQ=NKM
===NV=MKMQ=JMKMQ=NKM

93Results example

=========MKMQ=MKMQ=NKM
=========MKM=MKM=NKO=
===OM=MKMQ=JMKMQ=NKM
=========MKM=MKM=NKO
========JMKMQ=JMKMQ=NKM
===ON=JMKMQ=JMKMQ=NKM
=========MKM=MKM=NKO
========JMKMQ=MKMQ=NKM
===OO=JMKMQ=MKMQ=NKM
=========MKM=MKM=NKO
=========MKMQ=MKMQ=NKM
b¬¢=s~ª³£±

o£±³ª²= ?i£¥±= ¥~³±±= ¢§±®ª~¡£«£¬²±?= ?i­~¢= ^¬~ª·±§±?=N= s£¡²­°= l¬d~³±±m­§¬²±=
?i£¥±=¥~³±±=®­§¬²±?
s~ª³£±
====N=JMKN=JMKN=MKR
========JMKO=JMKO=MKPTR
========JMKMR=JMKMR=MKOR=
=========MKO=MKO=MKNOR
=========MKM=MKM=MKM
====O=MKN=JMKN=MKR
=========MKO=JMKO=MKPTR
=========MKMR=JMKMR=MKOR=
========JMKO=MKO=MKNOR
=========MKM=MKM=MKM
====P=MKN=MKN=MKR
=========MKO=MKO=MKPTR
=========MKMR=MKMR=MKOR=
========JMKO=JMKO=MKNOR
=========MKM=MKM=MKM
====Q=JMKN=MKN=MKR
========JMKO=MKO=MKPTR
========JMKMR=MKMR=MKOR=
=========MKO=JMKO=MKNOR
=========MKM=MKM=MKM

94Results example

b¬¢=s~ª³£±

6.1.5 Result group

Results can be grouped into one block. These results belong to the same time step of the
same analysis and are located in the same place. So all the results in the group are nodal
results or are defined over the same gauss points set.

Each Result group is identified by a ResultGroup header, followed by the results
descriptions and its optional properties - such as components names and ranges tables,
and the results values - all between the lines Values and End values.

The structure is as follows and should:

Begin with a header that follows this model

ResultGroup "analysis name" step_value my_location "location name"

where

ResultGroup: is not case-sensitive;
"analysis name": is the name of the analysis of this ResultGroup, which will be used
for menus; if the analysis name contains spaces it should be written between "" or
between {}.
step_value: is the value of the step inside the analysis "analysis name";
my_location: is where the ResultGroup is located. It should be one of the following:
OnNodes, OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name"
should be entered.
"location name": is the name of the Gauss Points on which the ResultGroup is
defined.

Be followed by at least one of the results descriptions of the group

ResultDescription "result name" my_result_type[:components_number]

ResultRangesTable "Name of a result ranges table"

ComponentNames "Name of Component 1", "Name of Component 2"

where

ResultDescription: is not case-sensitive;
"result name": is a name for the Result, which will be used for menus; if the result
name contains spaces it should be written between "" or between {}.
my_type: describes the type of the Result. It should be one of the following: Scalar,
Vector, Matrix, PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of
components for each type is as follows:
One for a Scalar: the_scalar_value
Three for a Vector: X, Y and Z
Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz
Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz
Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and

95Result group

ViiiZ
Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3

Following the description of the type of the result, an optional modifier can be appended to
specify the number of components separated by a colon. It only makes sense to indicate
the number of components on vectors and matrices:

Vector:2, Vector:3 or Vector:4: which specify:
Vector:2: X and Y
Vector:3: X, Y and Z
Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)

The default (Vector) is 3 components per vector.

Matrix:3 or Matrix:6: which specify:
Matrix:3: Sxx, Syy and Sxy
Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz

The default (Matrix) is 6 components for matrices.

Here are some examples:

o£±³ª²a£±¡°§®²§­¬=?a§±®ª~¡£«£¬²±?=s£¡²­°WO=
o£±³ª²a£±¡°§®²§­¬=?Oa=«~²°§¶?=j~²°§¶WP=
o£±³ª²a£±¡°§®²§­¬=?i§¬£a§~¥°~«s£¡²­°?=s£¡²­°WQ

and where (optional properties)

ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive,
and is followed by the name of the previously defined Result Ranges Table which will
be used if the Contour Ranges result visualization is chosen (see Result Range Table
-pag. 84-);
ComponentNames "Name of Component 1", "Name of Component 2": (optional) is
not case-sensitive, and is followed by the names of the components of the results
which will be used in GiD. The number of Component Names are:
One for a Scalar Result
Three for a Vector Result
Six for a Matrix Result
Four for a PlainDeformationMatrix Result
Six for a MainMatrix Result
Three for a LocalAxes Result

End with the results values:

Values

ª­¡~²§­¬|N= °£±³ª²|N|¡­«®­¬£¬²|N|´~ª³£= °£±³ª²|N|¡­«®­¬£¬²|O|´~ª³£=
°£±³ª²|N|¡­«®­¬£¬²|P|´~ª³£= °£±³ª²|O|¡­«®­¬£¬²|O|´~ª³£=
°£±³ª²|O|¡­«®­¬£¬²|O|´~ª³£=°£±³ª²|O|¡­«®­¬£¬²|P|´~ª³£
=K=K=K

ª­¡~²§­¬|¬= °£±³ª²|N|¡­«®­¬£¬²|N|´~ª³£= °£±³ª²|N|¡­«®­¬£¬²|O|´~ª³£=

96Result group

°£±³ª²|N|¡­«®­¬£¬²|P|´~ª³£= °£±³ª²|O|¡­«®­¬£¬²|O|´~ª³£=
°£±³ª²|O|¡­«®­¬£¬²|O|´~ª³£=°£±³ª²|O|¡­«®­¬£¬²|P|´~ª³£

End Values

where

Values: is not case-sensitive, and indicates the beginning of the results values
section;
The lines
location_1 result_1_component_1_value result_1_component_2_value
result_1_component_3_value result_2_component_2_value
result_2_component_2_value result_2_component_3_value
 . . .
location_n result_1_component_1_value result_1_component_2_value
result_1_component_3_value result_2_component_2_value
result_2_component_2_value result_2_component_3_value

are the values of the various results described with ResultDescription for each location. All
the results values for the location 'i' should be written in the same line 'i'.

The number of results values are limited thus:

If the Result is located OnNodes, they are limited to the number of nodes defined
in ProjectName.post.msh, or the old ProjectName.flavia.msh.
If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP"
are defined for the mesh "My mesh", the limit is the number of gauss points in "My
GP" multiplied by the number of elements of the mesh "My mesh".

Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they
will appear transparent.

The number of components for each ResultDescription are:

for Scalar results: one component result_number_i scalar_value
for Vector results: three components result_number_i x_value y_value z_value
for Matrix results: six components (3D models)3D: result_number_i Sxx_value
Syy_value Szz_value Sxy_value Syz_value Sxz_value
for PlainDeformationMatrix results: four components result_number_i Sxx_value
Syy_value Sxy_value Szz_value
for MainMatrix results: twelve components result_number_i Si_value Sii_value
Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value
Viiix_value Viiiy_value Viiiz_value
for LocalAxes results: three components describing the Euler angles
result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value

End Values: is not case-sensitive, and indicates the end of the results group values
section.

Note: Vectors in a ResultGroup always have three components.

Note: Matrices in a ResultGroup always have six components.

97Result group

Note: All the results of one node or gauss point should be written on the same line.

Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are
calculated by GiD, which represents the eigen values & vectors of the matrix results, and
which are ordered according to the eigen value.

Nodal ResultGroup example:

ResultGroup=?i­~¢=^¬~ª·±§±?=N=l¬k­¢£±

ResultDescription=?o~¬¥£±=²£±²?=p¡~ª~°

ResultRangesTable=?j·=²~ ª£?

ResultDescription=?p¡~ª~°=²£±²?=p¡~ª~°

ResultRangesTable=?m°£±±³°£?

ResultDescription=?a§±®ª~¡£«£¬²±?=s£¡²­°

ComponentNames=?uJa§±®ª?I=?vJa§±®ª?=?wJa§±®ª?

ResultDescription=?k­¢~ª=p²°£±±£±?=j~²°§¶

ComponentNames=?p¶?I=?p·?I=?p¸?I=?p¶·?I=?p·¸?I=?p¶¸?

Values

====N=MKM=MKMMMbHMM=MKMMMbHMM=MKMMMbHMM=MKM=MKRRMbHMM=MKVTObJMN= JMKNRQbHMM=
MKM=MKM=MKM
====O= SKQ£JMN= MKOMUbJMQ= MKOMUbJMQ= JMKNVNbJMQ= MKM= MKRMSbHMM= MKPPUbJMN=
JMKNMRbHMM=MKM=MKM=MKM
====P=MKM=MKPRRbJMQ=MKPRRbJMQ=JMKPTSbJMQ=MKM=MKPTTbHMM=MKQQNbJMO=JMKRQTbJMN=
MKM=MKM=MKM
KKK

==NNR= TKU£JMN= MKQOTbJMQ= MKQOTbJMQ= JMKNTRbJMP= MKM= MKNRSbJMN= JMKNRUbJMN=
JMKPMMbJMN=MKM=MKM=MKM
==NNS= TKQ£JMN= MKOQPbJMQ= MKOQPbJMQ= JMKNUVbJMP= MKM= MKONSbJMO= JMKVSUbJMO=
JMKOPNbJMN=MKM=MKM=MKM

End Values

Gauss Points ResultGroup example:

GaussPoints=?j·=d~³±±?=bª£«q·®£=q°§~¬¥ª£=?Oa=_£~«?

Number Of Gauss PointsW=P

Natural CoordinatesW=f¬²£°¬~ª

End gausspoints

o£±³ª²d°­³®=?i­~¢=^¬~ª·±§±?=N=l¬d~³±±m­§¬²±=?j·=d~³±±?=
o£±³ª²a£±¡°§®²§­¬=?d~³±±=²£±²?=p¡~ª~°

98Result group

o£±³ª²a£±¡°§®²§­¬=?s£¡²­°=d~³±±?=s£¡²­°
o£±³ª²a£±¡°§®²§­¬=?d~³±±=m­§¬²±=p²°£±±£±?=mª~§¬a£¤­°«~²§­¬j~²°§¶
s~ª³£±
==N=NKMR=N=M=MKM=JNVKQSMT=JNKNRVPO=JNKQPNTN=JSKNUSMN=
====OKN=M=N=MKM=JNVKQSMT=JNKNRVPO=JNKQPNTN=JSKNUSMN=
====PKNR=N=N=MKM=JNVKQSMT=JNKNRVPO=JNKQPNTN=JSKNUSMN=
==O=NKO=M=M=MKM=JOMKSOMT=MKRVSQSN=RKMQTRO=JSKMMTOT=
====OKOR=M=M=MKM=JOMKSOMT=MKRVSQSN=RKMQTRO=JSKMMTOT=
====PKP=OKMURR£JMR=JNKVNTQ£JMR=MKM=JOMKSOMT=MKRVSQSN=RKMQTRO=JSKMMTOT=
==P=NKPR=OKMURR£JMR=JNKVNTQ£JMR=MKM=JNSKMVUO=JNKORVVN=OKNRNMN=JRKOMTQO=
====OKQ=OKMURR£JMR=JNKVNTQ£JMR=MKM=JNSKMVUO=JNKORVVN=OKNRNMN=JRKOMTQO=
====PKQR=OKMURR£JMR=JNKVNTQ£JMR=MKM=JNSKMVUO=JNKORVVN=OKNRNMN=JRKOMTQO=
KKK

NVN=OVKRR=QKOTUN£JMR=JMKMMMNTRVQ=MKM=JMKQSUPTS=NOKNVTV=MKSNMUST=PKRNUUR=
====PMKS=QKOTUN£JMR=JMKMMMNTRVQ=MKM=JMKQSUPTS=NOKNVTV=MKSNMUST=PKRNUUR=
====PNKSR=QKOTUN£JMR=JMKMMMNTRVQ=MKM=JMKQSUPTS=NOKNVTV=MKSNMUST=PKRNUUR=
NVO=OVKT=QKOTUN£JMR=JMKMMMNTRVQ=MKM=MKTQTTOT=NNKMSOQ=NKNPOMN=PKRQPMP=
====PMKTR=QKOTUN£JMR=JMKMMMNTRVQ=MKM=MKTQTTOT=NNKMSOQ=NKNPOMN=PKRQPMP=
====PNKU=OKQPRT£JMR=JMKMMMNUVTQ=MKM=MKTQTTOT=NNKMSOQ=NKNPOMN=PKRQPMP=

End Values

6.2 Postprocess mesh format: ProjectName.post.msh

Note: This postprocess mesh format requires GiD version 6.0 or higher.

Comments are allowed and should begin with a '#'. Blank lines are also allowed.

To enter the mesh names and result names in another encoding, just write # encoding
your_encoding

for example:

=@=£¬¡­¢§¬¥=³²¤JU=

Inside this file one or more MESHes can be defined, each of them should:

Begin with a header that follows this model:

MESH "mesh_name" dimension my_dimension Elemtype my_type
Nnode my_number

where

99Postprocess mesh format: ProjectName.post.msh

MESH, dimension, elemtype, nnode: are keywords that are not case-sensitive;
?«£±¦|¬~«£?W is an optional name for the mesh;
«·|¢§«£¬±§­¬W is 2 or 3 according to the geometric dimension of the mesh;
«·|²·®£W describes the element type of this MESH. It should be one of the following;
m­§¬²I= i§¬£~°I= q°§~¬¥ª£I= n³~¢°§ª~²£°~ªI= q£²°~¦£¢°~I= e£¶~¦£¢°~I=m°§±«I=
m·°~«§¢I=p®¦£°£I=`§°¡ª£ ;
«·|¬³« £°W the number of nodes of my_type element:
Point: 1 node,

Point connectivity:

Linear: 2 or 3 nodes,

Line connectivities:

Triangle: 3 or 6 nodes,

Triangle connectivities:

Quadrilateral: 4, 8 or 9 nodes,

Quadrilateral
connectivities:

q£²°~¦£¢°~I 4 or 10 nodes,

q£²°~¦£¢°~I
 connectivities:

e£¶~¦£¢°~I 8, 20 or 27 nodes.

e£¶~¦£¢°~I
 connectivities:

Prism: 6 or 15 nodes,

100Postprocess mesh format: ProjectName.post.msh

Prism connectivities:

 Pyramid: 5 or 13 nodes,

Pyramid connectivities:

 Sphere: 1 node and a radius
 Circle: 1 node, a radius and a normal (x, y, z)

Note: For elements of order greater than linear, the connectivities must written in
hierarchical order, i.e. the vertex nodes first, then the middle ones.

An optional line describing its colour with # color R G B A, where R, G, B and A are the
Red, Green, Blue and Alpha components of the color written in integer format between 0
and 255, or in floating (real) format between 0.0 and 1.0. (Note that if 1 is found in the
line it will be understood as integer, and so 1 above 255, rather than floating, and so 1
above 1.0). Alpha values represent the transparency of the mesh when this visualization
options is active, being 0.0 totally opaque and 1.0 totally transparent.

color 127 127 0

In this way different colours can be specified for several meshes, taking into account that
the # color line must be between the MESH line and the Coordinates line.

Be followed by the coordinates:

coordinates

N=MKM=NKM=
PKM=K=K=KNMMM=
JOKR=VKP=ONKU=

end coordinates

where

the pair of keywords coordinates and end coordinates are not case-sensitive;
between these keywords there should be the nodal coordinates of all the MESHes or
the current one.

Note: If each MESH specifies its own coordinates, the node number should be unique, for

101Postprocess mesh format: ProjectName.post.msh

instance, if MESH "mesh one" uses nodes 1..100, and MESH "other mesh" uses 50 nodes,
they should be numbered from 101 up.

Be followed by the elements connectivity

elements

@£ª|¬³«=¬­¢£|N=¬­¢£|O=¬­¢£|P=­®²§­¬~ª|«~²£°§~ª|¬³« £°
N=N=O=P=ONR=
K=K=K
NMMM=PO=QU=OP=ONR=

end elements

where

the pair of keywords elements and end elements are not case-sensitive;
between these keywords there should be the nodal connectivities for the my_type
elements.

Note: On elements of order greater than linear, the connectivities must written in
hierarchical order, i.e. the vertex nodes first, then the middle ones;

There is optionally a material number.
For Sphere elements : bª£«£¬²|¬³« £°= k­¢£|¬³« £°= o~¢§³±= x=
­®²§­¬~ª|«~²£°§~ª|¬³« £°z
For Circle elements : bª£«£¬²|¬³« £°=k­¢£|¬³« £°=o~¢§³±=x­®²§­¬~ª|¬­°«~ª|¶=
­®²§­¬~ª|¬­°«~ª|·=­®²§­¬~ª|¬­°«~ª|¸z=x­®²§­¬~ª|«~²£°§~ª|¬³« £°z

 If the normal is not written for circles, normal (0.0, 0.0, 1.0) will be used.

6.2.1 Mesh example

This example clarifies the description:

@«£±¦=­¤=~=²~ ª£
jbpe=? ­~°¢?=¢§«£¬±§­¬=P=bª£«q·®£=q°§~¬¥ª£=k¬­¢£=P
@=¡­ª­°=NOT=NOT=M
`­­°¢§¬~²£±
@=¬­¢£=¬³« £°=¡­­°¢§¬~²£|¶=¡­­°¢§¬~²£|·=¡­­°¢§¬~²£|¸
====N=JR=P=JP
====O=JR=P=M
====P=JR=M=M
====Q=JO=O=M
====R=JNKSSSST=P=M
====S=JR=JP=JP
====T=JO=JO=M

102Mesh example

====U=M=M=M
====V=JR=JP=M
===NM=NKSSSST=P=M
===NN=JNKSSSST=JP=M
===NO=O=O=M
===NP=O=JO=M
===NQ=NKSSSST=JP=M
===NR=R=P=JP
===NS=R=P=M
===NT=R=M=M
===NU=R=JP=JP
===NV=R=JP=M
£¬¢=¡­­°¢§¬~²£±

@µ£=®³²= ­²¦=«~²£°§~ª=§¬=²¦£=±~«£=jbpeI=
@ ³²=²¦£·=¡­³ª¢= £=±£®~°~²£¢=§¬²­=²µ­=jbpe

bª£«£¬²±
@=£ª£«£¬²=¬­¢£|N=¬­¢£|O=¬­¢£|P=«~²£°§~ª|¬³« £°
====R=NV=NT=NP=P
====S=P=V=T=P
====T=O=P=Q=P
====U=NT=NS=NO=P
====V=NO=NS=NM=P
===NM=NO=NM=Q=P
===NN=T=V=NN=P
===NO=T=NN=NP=P
===NP=O=Q=R=P
===NQ=R=Q=NM=P
===NR=NV=NP=NQ=P
===NS=NQ=NP=NN=P
===NT=P=T=Q=P
===NU=NT=NO=NP=P
===NV=NP=NO=U=Q
===OM=NP=U=T=Q
===ON=T=U=Q=Q

103Mesh example

===OO=Q=U=NO=Q
£¬¢=£ª£«£¬²±

jbpe=¢§«£¬±§­¬=P=bª£«q·®£=i§¬£~°=k¬­¢£=O
`­­°¢§¬~²£±
@¬­=¡­­°¢§¬~²£±=²¦£¬=²¦£·=~°£=~ª°£~¢·=§¬=²¦£=¤§°±²=jbpe
£¬¢=¡­­°¢§¬~²£±

bª£«£¬²±
@=£ª£«£¬²=¬­¢£|N=¬­¢£|O=«~²£°§~ª|¬³« £°
====N=V=S=R
====O=NV=NU=R
====P=NS=NR=R
====Q=O=N=R
£¬¢=£ª£«£¬²±

6.2.2 Group of meshes

If the same meshes are used for all the analyses, the following section can be skipped.

A new concept has been introduced in Postprocess: Group, which allows the
postprocessing of problems which require re-meshing or adaptive meshes, where the mesh
change depending on the time step.

Normal operations, such as animation, displaying results and cuts, can be done over these
meshes, and they will be actualized when the selected analysis/step is changed, for
example by means of View results -> Default analysis/step

There are two ways to enter in GiD the diferent meshes defined por diferent steps or
analysis:

1. define separate files for each mesh, for instance:

 - binary format: mesh+result_1.post.bin, mesh+result_2.post.bin,
mesh+result_3.post.bin, ...

 - ascii format: mesh_1.post.msh + mesh_1.post.res, mesh_2.post.msh +
mesh_2.post.res, ...

Note: the steps values (or analysis) should be diferent for each pair mesh+result.

 To read them you can use File-->Open Multiple (see POSTPROCESS > Files menu from
Reference Manual)

2. define on binary file or two ascii files (msh+res):

Meshes that belong to a group should be defined between the following highlighted
commands

104Group of meshes

Group "group name"

MESH "mesh_name" dimension ...

...

end elements

MESH "another_mesh" ...

...

end elements

end group

Results which refer to one of the groups should be written between these highlighted
commands

OnGroup "group name"

Result "result name"

...

end values

...

end ongroup

Note: GiD versions 7.7.3b and later only allow one group at a time, i.e. only one group
can be defined across several steps of the analysis. Care should be taken so that groups do
not overlap inside the same step/analysis.

For instance, an analysis which is 10 steps long:

For steps 1, 2, 3 and 4: an 'environment' mesh of 10000 elements and a 'body' mesh of
10000 elements are used

jbpe=?£¬´§°­¬«£¬²?
KKK=`­­°¢§¬~²£±
KKK
NMMMM=KKK
£¬¢=£ª£«£¬²±
jbpe=? ­¢·?=KKK
KKK
OMMMM=KKK
£¬¢=£ª£«£¬²±

and its results

d§a=m­±²=o£±³ª²±=c§ª£=NKM
KKK

105Group of meshes

o£±³ª²±=?°£±³ª²=N?=?²§«£?=NKM=KKK
KKK
o£±³ª²±=?°£±³ª²=N?=?²§«£?=OKM=KKK
KKK
o£±³ª²±=?°£±³ª²=N?=?²§«£?=PKM=KKK
KKK
o£±³ª²±=?°£±³ª²=N?=?²§«£?=QKM=KKK
KKK
£¬¢=´~ª³£±

For steps 5, 6, 7 and 8: with some refinement, the 'environment' mesh now being used
has 15000 elements and the 'body' mesh needs 20000 elements

jbpe=?£¬´§°­¬«£¬²?=
KKK=
`­­°¢§¬~²£±=
KKK=
NRMMM=KKK=
£¬¢=£ª£«£¬²±=
jbpe=? ­¢·?=KKK=
KKK=
=PRMMM=KKK=
£¬¢=£ª£«£¬²±

and its results are

d§a=m­±²=o£±³ª²±=c§ª£=NKM=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=RKM=KKK=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=SKM=KKK=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=TKM=KKK=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=UKM=KKK=
KKK=
£¬¢=´~ª³£±

For steps 9 and 10: the last meshes to be used are of 20000 and 40000 elements,

106Group of meshes

respectively

jbpe=?£¬´§°­¬«£¬²?=KKK=
`­­°¢§¬~²£±=
KKK=
OMMMM=KKK=
£¬¢=£ª£«£¬²±=
jbpe=? ­¢·?=KKK=
KKK=
SMMMM=KKK=
£¬¢=£ª£«£¬²±

and its results are

d§a=m­±²=o£±³ª²±=c§ª£=NKM=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=VKM=KKK=
KKK=
o£±³ª²±=?°£±³ª²=N?=?²§«£?=NMKM=KKK=
KKK=
£¬¢=´~ª³£±

There are two ways to postprocess this:

store the information in three pairs (or three binary files), thus:
steps_1_2_3_4.post.msh and steps_1_2_3_4.post.msh (or
steps_1_2_3_4.post.bin)
steps_5_6_7_8.post.msh and steps_5_6_7_8.post.msh (or
steps_5_6_7_8.post.bin)
steps_9_10.post.msh and steps_9_10.post.msh (or steps_9_10.post.bin)

and use the 'Open multiple' option (see POSTPROCESS > Files menu from Reference
Manual) to selected the six (or three) files; or

write them in only two files (one in binary) by using the Group concept:
all_analysis.post.msh (note the group - end group pairs)

Group "steps 1, 2, 3 and 4"

MESH "environment" ...

...

MESH "body" ...

...

end group

107Group of meshes

Group "steps 5, 6, 7 and 8"

MESH "environment" ...

...

MESH "body" ...

...

end group

Group "steps 9 and 10"

MESH "environment" ...

...

MESH "body" ...

...

end group

and

all_analysis.post.res (note the ongroup - end ongroup pairs)

GiD Post Results File 1.0

OnGroup "steps 1, 2, 3 and 4"

...

Results "result 1" "time" 1.0 ...

...

Results "result 1" "time" 2.0 ...

...

Results "result 1" "time" 3.0 ...

...

Results "result 1" "time" 4.0 ...

...

end ongroup

OnGroup "steps 5, 6, 7 and 8"

...

Results "result 1" "time" 5.0 ...

...

Results "result 1" "time" 6.0 ...

...

Results "result 1" "time" 7.0 ...

...

108Group of meshes

Results "result 1" "time" 8.0 ...

...

end ongroup

OnGroup "steps 9 and 10"

...

Results "result 1" "time" 9.0 ...

...

Results "result 1" "time" 10.0 ...

...

end ongroup

and use the normal Open option.

6.3 Postprocess list file: ProjectName.post.lst

New file *.post.lst can be read into GiD, postprocess. This file is automatically read when
the user works in a GiD project and changes from pre to postprocess.

This file can also be read with File-->Open

The file contains a list of the files to be read by the postprocess:

 The first line should contain one of these words: Single / Merge / Multiple to read a
single file, merge the list of files or handle them as several meshes (for diferent time
steps);
 rest of lines: the files to be read, with one filename per line;
 both comments starting with '#' and blank lines are admited;
 if the filenames do not have its absolute path, then the path of the file containg the list
will be used;
 graphs files can also be read (*.grf).

6.4 Postprocess graphs file: ProjectName.post.grf

The graph file that GiD uses is a standard ASCII file.

Every line of the file is a point on the graph with X and Y coordinates separated by a space.

Comment lines are also allowed and should begin with a '#'.

The title of the graph and the labels for the X and Y axes can also be configured with some
'special' comments:

Title: If a comment line contains the Keyword 'Graph:' the string between quotes that
follows this keyword will be used as the title of the graph.
Axes labels: The string between quotes that follows the keywords 'X:' and 'Y:' will be
used as labels for the X- and Y-axes respectively. The same is true for the Y axis, but
with the Keyword 'Y:'.

109Postprocess graphs file: ProjectName.post.grf

Axes units:

Example:

@=d°~®¦W=?p²°£±±£±?=
@
@=uW=?p¸¸Jk­¢~ª|p²°££±±?=vW=?p¶¸Jk­¢~ª|p²°£±±?=
@=r¬§²±W=m~=m~
JPMRRKQQQ=NSTOKPSR=
JOUPTKMNP=RUVOKNNR=
JOPTNKNVR=SSSKVRQP=
JOMPMKSQP=PPVMKQRT=
JNRUUKUUP=JQMQOKSQV=
JNMNNKR=NOPSKVRU=
@=b¬¢

The file *.grf (which contains graphs) is read when changing from pre to post process and
projectName.gid/projectName.post.grf exists, or the postprocess files are read through
File-->Open, then example.msh/res/bin and example.grf are read.

The post list file (*.post.lst) can also contain a list of graphs (*.grf).

110TCL AND TK EXTENSION

7 TCL AND TK EXTENSION

111

This chapter looks at the advanced features of GiD in terms of expandability and total
control. Using the Tcl/Tk extension you can create script files to automatize any process
created with GiD. With this language new windows and functionalities can be added to the
program.

For more information about the Tcl/Tk programming language itself, look at
www.scriptics.com http://www.scriptics.com.

If you are going to use a Tcl file, it must be located in the Problem Type directory and be
called problem_type_name.tcl.

7.1 Event procedures

The structure of problem_type_name.tcl can optionally implement some of these Tcl
prototype procedures (and other user-defined procedures). The procedures listed below
are automatically called by GiD. Their syntax corresponds to standard Tcl/Tk language:

®°­¡=f¬§²dfam°­¨£¡²=¹=¢§°=»=¹=
»

®°­¡=_£¤­°£f¬§²dfam­±²m°­¡£±±=¹»=¹=
»

®°­¡=f¬§²dfam­±²m°­¡£±±=¹»=¹=
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=b¬¢dfam°­¨£¡²=¹»=¹=

112Event procedures

»

®°­¡=b¬¢dfam­±²m°­¡£±±=¹»=¹
»

®°­¡=^¤²£°l®£¬c§ª£=¹=¤§ª£¬~«£=¤­°«~²=£°°­°=»=¹
»

®°­¡=^¤²£°p~´£f«~¥£=¹=¤§ª£¬~«£=¤­°«~²=»=¹
»

®°­¡=i­~¢dfam°­¨£¡²=¹=¤§ª£±®¢=»=¹
»

®°­¡=p~´£dfam°­¨£¡²=¹=¤§ª£±®¢=»=¹
»

®°­¡=i­~¢o£±³ª²±dfam­±²m°­¡£±±=¹=¤§ª£=»=¹
»

®°­¡=_£¤­°£j£±¦d£¬£°~²§­¬=¹=£ª£«£¬²±§¸£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°j£±¦d£¬£°~²§­¬=¹=¤~§ª=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°o£¬³« £°=¹=³±£­¤=ª£´£ª²·®£=°£¬³«£°~²§­¬=»=¹
»

®°­¡=p£ª£¡²dfa_~²c§ª£=¹=¢§°= ~±£¬~«£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡= _£¤­°£o³¬`~ª¡³ª~²§­¬=¹= ~²¤§ª£¬~«£= ~±£¬~«£=¢§°= ®°­ ª£«²·®£¢§°=¥§¢£¶£=
~°¥±=»=¹

113Event procedures

==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡= ^¤²£°o³¬`~ª¡³ª~²§­¬= ¹= ~±£¬~«£= ¢§°= ®°­ ª£«²·®£¢§°= µ¦£°£= £°°­°=
£°°­°¤§ª£¬~«£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=`¦~¬¥£¢i~¬¥³~¥£=¹=ª~¬¥³~¥£=»=¹
»

®°­¡=_£¤­°£t°§²£`~ª¡c§ª£dfam°­¨£¡²=¹=¤§ª£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°t°§²£`~ª¡c§ª£dfam°­¨£¡²=¹=¤§ª£=£°°­°=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=_£¤­°£q°~¬±¤­°«m°­ ª£«q·®£=¹=¤§ª£=­ª¢®°­ ª£«²·®£=¬£µ®°­ ª£«²·®£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°q°~¬±¤­°«m°­ ª£«q·®£=¹=¤§ª£=­ª¢®°­ ª£«²·®£=¬£µ®°­ ª£«²·®£=»=¹
»

®°­¡=q¡ª`~ª¡j­¢£ª_­³¬¢~°§£±¹=³±£­¤=»=¹
==KKK ­¢·KKK
==°£²³°¬=?A¶«§¬=A·«§¬=A¸«§¬=A¶«~¶=A·«~¶=A¸«~¶?
»

114Event procedures

®°­¡=^¤²£°`¦~¬¥£_~¡©¥°­³¬¢=¹=»=¹
»

®°­¡=_£¤­°£`­®·=¹=³±£­¤=²°~¬±¤­°«~²§­¬=£°°­°=»=¹
»

®°­¡=^¤²£°`­®·=¹=³±£­¤=²°~¬±¤­°«~²§­¬=£°°­°=»=¹
»

®°­¡=_£¤­°£j­´£=¹=³±£­¤=²°~¬±¤­°«~²§­¬=£°°­°=»=¹
»

®°­¡=^¤²£°j­´£=¹=³±£­¤=²°~¬±¤­°«~²§­¬=£°°­°=»=¹
»

®°­¡=^¤²£°`°£~²£m­§¬²=¹=¬³«=»=¹
»

®°­¡=^¤²£°`°£~²£i§¬£=¹=¬³«=»=¹
»

®°­¡=^¤²£°`°£~²£p³°¤~¡£=¹=¬³«=»=¹
»

®°­¡=^¤²£°`°£~²£s­ª³«£=¹=¬³«=»=¹
»

®°­¡=_£¤­°£a£ª£²£m­§¬²=¹=¬³«=»=¹
»

®°­¡=_£¤­°£a£ª£²£i§¬£=¹=¬³«=»=¹
»

®°­¡=_£¤­°£a£ª£²£p³°¤~¡£=¹=¬³«=»=¹
»

®°­¡=_£¤­°£a£ª£²£s­ª³«£=¹=¬³«=»=¹
»

®°­¡=^¤²£°`°£~²£i~·£°=¹=¬~«£=»=¹
»

®°­¡=^¤²£°o£¬~«£i~·£°=¹=­ª¢¬~«£=¬£µ¬~«£=»=¹
»

®°­¡=_£¤­°£a£ª£²£i~·£°=¹=¬~«£=»=¹

115Event procedures

==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°`¦~¬¥£i~·£°=¹=¬~«£=®°­®£°²·=»=¹
»

®°­¡=^¤²£°p£²i~·£°q­r±£=¹=¬~«£=»=¹
»

®°­¡=^¤²£°`¦~¬¥£i§¡£¬¡£p²~²³±=¹=±²~²³±=»=¹

»

®°­¡=^¤²£°`°£~²£j~²£°§~ª=¹=¬~«£=»=¹
»

®°­¡=^¤²£°o£¬~«£j~²£°§~ª=¹=­ª¢¬~«£=¬£µ¬~«£=»=¹
»

®°­¡=_£¤­°£a£ª£²£j~²£°§~ª=¹=¬~«£=»=¹
==KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=^¤²£°`¦~¬¥£j~²£°§~ª=¹=¬~«£=¡¦~¬¥£¢¤§£ª¢±=»=¹
»

®°­¡=^¤²£°^±±§¥¬j~²£°§~ª=¹=¬~«£=ª£´£ª²·®£=»=¹
»

®°­¡=_£¤­°£j£±¦b°°­°±=¹=¤§ª£¬~«£=»=¹
===KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£
»

®°­¡=_£¤­°£o£±³ª²o£~¢b°°­°±=¹=¤§ª£¬~«£=«±¥=¤­°«~²=»=¹
===KKK ­¢·KKK
==±£²=´~ª³£=KKK
==°£²³°¬=A´~ª³£

116Event procedures

»

InitGIDProject: will be called when the problem type is selected. It receives the dir
argument, which is the absolute path to the problem_type_name.gid directory, which
can be useful inside the routine to locate some alternative files.
BeforeInitGIDPostProcess : will be called just before changing from pre to
postprocess, and before read any postprocess file (this event can be used for example to
check the results file existence and/or rename files). It has no arguments.

If it returns -cancel- as a value then the swapping to postprocess mode will be cancelled.

InitGIDPostProcess: will be called when postprocessing starts. It has no arguments.
EndGIDProject: will be called when this project is about to be closed. It has no
arguments.
EndGIDPostProcess: will be called when you leave Postprocess and open Preprocess.
It has no arguments.
AfterOpenFile: will be called after a geometry or mesh file is read inside GiD. It
receives as arguments:
filename: the full name of the file that has been read;
format: ACIS_FORMAT, CGNS_FORMAT, DXF_FORMAT, GID_BATCH_FORMAT,
GID_GEOMETRY_FORMAT, GID_MESH_FORMAT, IGES_FORMAT, NASTRAN_FORMAT,
PARASOLID_FORMAT, RHINO_FORMAT, SHAPEFILE_FORMAT, STL_FORMAT,
VDA_FORMAT, VRML_FORMAT or 3DSTUDIO_FORMAT;
error: boolean 0 or 1 to indicate an error when reading.

AfterSaveImage: will be called after a picture or model is saved to disk. It receives as
arguments:
filename: the full name of the file that has been saved;
format: eps, ps, tif, bmp, ppm, gif, png, jpg, tga, wrl

LoadGIDProject: will be called when a GiD project or problem type is loaded. It
receives the argument filespd, which is the path of the file which is being opened, but
with the extension .spd (specific problemtype data). This path can be useful if you want
to write specific information about the problem type in a new file.
SaveGIDProject: will be called when the currently open file is saved to disk. It receives
the argument filespd, which is the path of the file being saved, but with the extension
.spd (specific p roblemtype data). This path can be useful if you want to write specific
information about the problem type in a new file.
LoadResultsGIDPostProcess: will be called when a results file is opened in GiD
Postprocess. It receives one argument, the name of the file being opened without its
extension.
BeforeMeshGeneration: will be called before the mesh generation. It receives the
mesh size desired by the user as the elementsize argument. This event can typically be
used to assign some condition automatically.

If it returns -cancel- the mesh generation is cancelled.

AfterMeshGeneration: will be called after the mesh generation. It receives as its fail
argument a true value if the mesh is not created.

If it returns -cancel- ?<message>? then the window showing the end of the mesh

117Event procedures

generation will not be raised, but the mesh is not deleted. <message> is an optional
message to be shown in the message bar.

AfterRenumber: will be called after renumber the geometry or the mesh (to update for
example fields storing entity identifiers)
useof : could be GEOMETRYUSE or MESHUSE
leveltype: the kind of entity that was renumbered.

Geometry: must be ALL_LT.

Mesh: could be NODE_LT or ELEM_LT.

renumeration:

Geometry: four sublists with the old and new idenfiers for points, lines, surfaces and
volumes.

Mesh: a sublist with the old and new identifiers for nodes or elements.

SelectGIDBatFile: must be used to switch the default batch file for special cases.

This procedure must return as a value the alternative pathname of the batch file. For
example it is used as a trick to select a different analysis from a list of batch calculation
files.

BeforeRunCalculation: will be called before running the analysis. It receives several
arguments:
batfilename: the name of the batch file to be run (see EXECUTING AN EXTERNAL
PROGRAM -pag. 67-);
basename: the short name model;
dir: the full path to the model directory;
problemtypedir: the full path to the Problem Types directory;
gidexe: the full path to gid;
args: an optional list with other arguments.

If it returns -cancel- ?<message>? then the calculation is not started. <message> is an
optional message to be shown.

AfterRunCalculation: will be called just after the analysis finishes.

If it returns nowindow as a value then the window that inform about the finished process
will not be opened.

It receives as arguments:

basename: the short name model;
dir: the full path to the model directory;
problemtypedir: the full path to the Problem Types directory;
where: must be local or remote (remote if it was run in a server machine, using
ProcServer);
error: returns 1 if an calculation error was detected;
errorfilename: an error filename with some error explanation, or nothing if everything
was ok.

ChangedLanguage: will be called when you change the current language. The
argument is the new language (en, es, ...). It is used, for example, to update problem

118Event procedures

type customized menus, etc.
BeforeWriteCalcFileGIDProject: will be called just before writing the calculation file.
It is useful for validating some parameters.

If it returns -cancel- as a value then nothing will be written.

file: the name of the output calculation file.
AfterWriteCalcFileGIDProject: will be called just after writing the calculation file and
before the calculation process. It is useful for renaming files, or cancelling the analysis.

If it returns -cancel- as a value then the calculation is not invoked.

file: the name of the output calculation file error: an error code if there is some
problem writing the output calculation file.

BeforeTransformProblemType: will be called just before transforming a model from a
problem type to a new problem type version. If it returns -cancel- as a value then the
transformation will not be invoked.
file: the name of the model to be transformed;
oldproblemtype: the name of the previous problem type;
newproblemtype: the name of the problem type to be transformed.

AfterTransformProblemType: will be called just after transforming a model from a
problem type to a new problem type version. If must return 1 if there were changes, 0
else.
file: the name of the model to be transformed;
oldproblemtype: the name of the previous problem type;
newproblemtype: the name of the problem type to be transformed.

TclCalcModelBoundaries: will be called when recalculating the bounding box, for
example when user select "zoom frame"
useof: can be "GEOMETRYUSE", "MESHUSE", "POSTUSE" or "GRAFUSE".

This procedure must return xmin ymin zmin xmax ymax zmaz of the bounding box of the
entities directly managed by the problemtype (this entities must be directly drawn with the
drawopengl command).

If "" is returned instead "xmin ymin zmin xmax ymax zmaz" then any additional bounding
box is considered.

AfterChangeBackground: will be called just after change some background property,
like color, direction or image.
BeforeCopy/Move AfterCopy/Move: will be called just before or after use copy or
move tools.
useof : could be GEOMETRYUSE or MESHUSE
transformation : could be ROTATION, TRANSLATION, MIRROR, SCALE, OFFSET,
SWEEP or ALIGN

AfterCreatePoint/Line/Surface/Volume: will be called just after create the entity,
providing its number
BeforeDeletePoint/Line/Surface/Volume: will be called just before delete the
entity, providing its number
AfterCreateLayer: will be called just after create the layer 'name'
AfterRenameLayer: will be called just after the layer 'oldname' has been renamed to

119Event procedures

'newname'
BeforeDeleteLayer: will be called just before delete the layer 'name'

 If it returns -cancel- the layer deletion is cancelled.

AfterChangeLayer: will be called just after change some property of the layer 'name'
'property' could be ON, OFF, FROZEN, UNFROZEN, ALPHA <AAA>, COLOR
<RRRGGGBBB?AAA?>

 whit RRR, GGG, BBB, AAA from 0 to 255

AfterSetLayerToUse: will be called when setting 'name' as current layer to use
AfterChangeLicenceStatus: will be called when the licence status of GiD changes.
Possible status could be "academic", "professional" or "temporallyprofessional"
AfterCreateMaterial: will be called just after create the material 'name'
AfterRenameMaterial: will be called just after the mateial 'oldname' has been
renamed to 'newname'
BeforeDeleteMaterial: will be called just before delete the material 'name'

 If it returns -cancel- the material deletion is cancelled.

AfterChangeMaterial: will be called just after change some field value of the material
'name'.

¡¦~¬¥£¢¤§£ª¢±=is a list with the index of the changed fields (index starting from 1)
AfterAssignMaterial: will be called just after assign or unassign the material of some
entities.

name is the name of the new material. If it is "" then the material has been unassigned.

leveltype: is the kind of entity, if could be:

 For geometry: POINT_LT, LINE_LT, SURFACE_LT,VOLUME_LT

For mesh: ELEM_LT.

BeforeMeshErrors: filename is the full path to the file that has information about the
meshing errors.

Retuning -cancel- the standard 'Mesh error window' won't be opened

BeforeResultReadErrors: filename is the results file that was read, msg is the error
message, format provide information about the kind of file: cand be
"GID_RESULTS_FORMAT", "3DSTUDIO_FORMAT", "TECPLOT_FORMAT",
"FEMAP_FORMAT", "XYZ_FORMAT"

Retuning -cancel- the standard 'Read results error window' won't be opened

Note: To use Tcl to improve the capabilities of writing the calculations file, it is possible to
use the command *tcl in the template file (.bas file); see Specific commands -pag. 38- for
details.

7.2 GiD_Process function

GiD_Process command_1 command_2 ...

120GiD_Process function

Tcl command used to execute GiD commands.

This is a simple function, but a very powerful one. It is used to enter commands directly
inside the central event manager. The commands have the same form as those typed in
the command line within GiD.

You have to enter exactly the same sequence as you would do interactively, including the
escape sequences (using the word escape) and selecting the menus and operations used.

You can obtain the exact commands that GiD needs by checking the Right buttons menu
(Utilities -> Tools -> Toolbars). It is also possible to save a batch file (Utilities ->
Preferences) where the commands used during the GiD session can be checked.

Here is a simple example to create one line:

d§a|m°­¡£±±=j£±¡~®£=d£­«£²°·=`°£~²£=i§¬£=MIMIM=NMIMIM=£±¡~®£

Note: j£±¡~®£ is a multiple D£±¡~®£D command, to go to the top of the commands tree.

7.3 GiD_Info function

GiD_Info <option>

Tcl command used to obtain information about the current GiD project.

This function provides any information about GiD, the current data or the state of any task
inside the application.

Depending on the arguments introduced after the GiD_Info sentence, GiD will output
different information:

7.3.1 materials

GiD_Info materials

This command returns a list of the materials in the project.

These options are also available:

<material_name>: If a material name is given, its properties are returned. It is also
possible to add the option otherfields to get the fields of that material, or the option
[BOOK] to get the book of that material.
books: If this option is given, a list of the material books in the project is returned.

Examples:

§¬W=d§a|f¬¤­=«~²£°§~ª±=
­³²W=?^§°=p²££ª=^ª³«§¬§³«=`­¬¡°£²£=t~²£°=p~¬¢?
§¬W=d§a|f¬¤­=«~²£°§~ª±=p²££ª=
­³²W=?N=a£¬±§²·=TURM?
d§a|f¬¤­=«~²£°§~ª±=p²££ª=­²¦£°¤§£ª¢±

121materials

d§a|f¬¤­=«~²£°§~ª±= ­­©±

7.3.2 conditions

GiD_Info conditions ovpnt | ovline | ovsurf | ovvol

This command returns a list of the conditions in the project. One of the arguments ovpnt,
ovline, ovsurf, ovvol must be given to indicate the type of condition required, respectively,
conditions over points, lines, surfaces or volumes.

Instead of ovpnt, ovline, ovsurf, ovvol, the following options are also available:

[-interval <intv>] [-localaxes | -localaxesmat | -localaxescenter |
-localaxesmatcenter] <condition_name> [geometry | mesh]: if a condition name
is given, the command returns the properties of that condition. It is also possible to add
the options geometry or mesh, and all geometry or mesh entities that have this
condition assigned will be returned.

If -interval "intv" is set, then the conditions on this interval ("intv"=1,...n) are returned
instead of those on the current interval.

If -localaxes is set, then the three numbers that are the three Euler angles that define a
local axes system are also returned (only for conditions with local axes, see DATA>Local
Axes from Reference Manual).

Selecting -localaxesmat, the nine numbers that define the transformation matrix of a
vector from the local axes system to the global one are returned.

If -localaxescenter is set, then the three Euler angles and the local axis center are also
returned.

Selecting -localaxesmatcenter returns the nine matrix numbers and the center.

Adding the number id of an entity (["entity_id"]) after the options mesh or geometry, the
command returns the value of the condition assigned to that entity.

Other options available if the condition name is given are [otherfields], to get the fields
of that condition, and [book], to get the book of the condition.

[books]: If this option is given, a list of the condition books of the project is returned.

Examples:

§¬W=d§a|f¬¤­=¡­¬¢§²§­¬±=­´®¬²=
­³²W=?m­§¬²Jt£§¥¦²=m­§¬²Ji­~¢?

§¬W=d§a|f¬¤­=¡­¬¢§²§­¬±=m­§¬²Jt£§¥¦²=
­³²W=?­´®¬²=N=t£§¥¦²=M?

§¬W=d§a|f¬¤­=¡­¬¢§²§­¬±=m­§¬²Jt£§¥¦²=¥£­«£²°·=
­³²W=?b=N=J=OPPQ=I=b=O=J=OPPQ=I=b=P=J=PQP?

§¬W=d§a|f¬¤­=`­¬¢§²§­¬±=Jª­¡~ª~¶£±=`­¬¡°£²£|°£¡|±£¡²§­¬=«£±¦=O=
­³²W=¹b=O=J=¹QKTNOPUUVUMPUQSUVT=NKRTMTVSPOSTVQUVSS=MKM»=kJ«=MKP=MKP=e^JOR»

122layers

7.3.3 layers

GiD_Info layers

This command returns a list of the layers in the project.These options are also available:

[<layer_name>]: If a layer name is given, the command returns the properties of
that layer.
[-on]: Returns a list of the visible layers.
[-off]: Returns a list of the hidden layers.
[-hasbacklayers]: Returns 1 if the project has entities inside back layers.
GiD_Info back_layers returns a list with the back layers

Example:

§¬W=d§a|f¬¤­= ~¡©|ª~·£°±=
­³²W=i~·£°O|G ~¡©G

[-bbox[-use geometry|mesh]]: layer_name_1 layer_name_2 ...]: Returns two
coordinates (x1,y1,z1,x2,y2,z2) which define the bounding box of the entities that
belong to the list of layers.

If the option [-use geometry|mesh] is used, the command returns the bounding box of
the geometry or the bounding box of the mesh.

If the list of layers is empty, the maximum bounding box is returned.

[-entities <type> ?-elementtype <elementtype>? ?-higherentity
<num>?]: One of the following arguments must be given for <type>: nodes,
elements, points, lines, surfaces or volumes. A layer name must also be given.
The command will return the nodes, elements, points, lines surfaces or volumes of
that layer.

 For elements it is possible to specify -elementtype <elementtype>to get only this
kind of elements.

-higherentity <num>Allow to get only entities with this amount of higherentities.

Examples:

i¬W=d§a|f¬¤­=ª~·£°±=
­³²W=?ª~·£°N=ª~·£°O=ª~·£°|~³¶?

§¬W=d§a|f¬¤­=ª~·£°±=J­¬=
­³²W=?ª~·£°N=ª~·£°O?

§¬W=d§a|f¬¤­=ª~·£°±=J£¬²§²§£±=ª§¬£±=ª~·£°O=
­³²W=?S=T=U=V?

7.3.4 gendata

GiD_Info gendata

This command returns the information entered in the Problem Data window (see Problem

123gendata

and intervals data file (.prb) -pag. 15-).

The following options are available:

[otherfields]: It is possible to add this option to get the additional fields from the
Problem Data window.
[books]: If this option is given, a list of the Problem Data books in the project is
returned.

Example:

§¬W=d§a|f¬¤­=¥£¬¢~²~=
­³²W=?O=r¬§²|p·±²£«@`_@EpfI`dpIr±£°F=pf=q§²ª£=j|²§²ª£?

7.3.5 intvdata

GiD_Info intvdata

This command returns a list of the interval data in the project (see Problem and intervals
data file (.prb) -pag. 15-).

The following options are available:

-interval <number>: To get data from an interval different from the number 0
(default).
[otherfields]: It is possible to add this option to get the additional fields from the
Interval Data window.
[books]: If this option is given, a list of the Interval Data books in the project is
returned.
[num]: If this option is given, a list of two natural numbers is returned. The first
element of the list is the current interval and the second element is the total number of
intervals.

7.3.6 project

GiD_Info Project <item>?

This command returns information about the project. More precisely, it returns a list with:

Problem type name.
Current model name.
'There are changes' flag.
Current layer to use.
Active part (GEOMETRYUSE, MESHUSE, POSTUSE or GRAFUSE).
Quadratic problem flag.
Drawing type (normal, polygons, render, postprocess).
NOPOST or YESPOST.
Debug or nodebug.
GiD temporary directory.
Must regenerate the mesh flag (0 or 1).
Last element size used for meshing (NONE if there is no mesh).
BackgroundFilename is the name of a background mesh file to assign mesh sizes.

124project

RequireMeshSize. (1 if all sizes are specified by the number of divisions, then user is
not required to specify the mesh size)
RecommendedMeshSize. (The value of the mesh size that the program will
recommend, based on the model size)

It is possible to ask for a single item only rather than the whole list, with <item> equal to:

ProblemType | ModelName | AreChanges | LayerToUse | ViewMode | Quadratic |
RenderMode | ExistPost | Debug | TmpDirectory | MustReMesh | LastElementSize
| BackgroundFilename | RequireMeshSize | RecommendedMeshSize

Example:

§¬W=d§a|f¬¤­=m°­¨£¡²=
­³²W=?¡«~±O¢= £Wy«­¢£ª±y¡~°|«­¢£ª=N=ª~·£°P=jbperpb=M=¬­°«~ª=vbpmlpq=¬­¢£ ³¥=
`Wyqbjmy¥§¢O=M=NKQ?=

§¬W=d§a|f¬¤­=m°­¨£¡²=j­¢£ªk~«£=
­³²W=?£Wy«­¢£ª±y¡~°|«­¢£ª?

7.3.7 geometry

GiD_Info Geometry

This command gives the user information about the geometry in the project. For each
entity, there are two possibilities:

[NumPoints]: Returns the total number of points in the model.
[NumLines]: Returns the total number of lines.
[NumSurfaces]: Returns the total number of surfaces.
[NumVolumes]: Returns the total number of volumes.
[NumDimensions]: Returns the total number of dimensions.
[MaxNumPoints]: Returns the maximum point number used (can be higher than
NumPoints).
[MaxNumLines]: Returns the maximum line number used.
[MaxNumSurfaces]: Returns the maximum surface number used.
[MaxNumVolumes]: Returns the maximum volume number used.
[MaxNumDimensions]: Returns the maximum dimension number used.

7.3.8 mesh

GiD_Info Mesh

This command gives the user information about the selected mesh in the project.

It returns a 1 followed by a list with all types of element used in the mesh.

[NumElements [Elemtype] [nnode]]: returns the number of elements of the
mesh.

Elemtype can be: Linear / Triangle / Quadrilateral / Tetrahedra / Hexahedra /
Prism / Pyramid / Point / Sphere / Circle / Any.

125mesh

nnode is the number of nodes of an element.

[NumNodes]: Returns the total number of nodes of the mesh.
[MaxNumElements]: Returns the maximum element number.
[MaxNumNodes]: Returns the maximum node number.
[-pre | -post -step <step>]: To specify to use the preproces or postprocess mesh,
and the time step if it changes along the time.
[Elements Elemtype[First_idLast_id]]: Returns a list with the element number,
the connectivities , radius if it is a sphere, normal if it is a circle, and the material
number, from 'first_id' to 'last_id, if they are specified.
[Nodes[First_idLast_id]] : Returns a list with the node number and x y z
coordinates, from 'first_id' to 'last_id', if they are specified.
[-sublist] : Returns each result item as a Tcl list (enclosed in braces)
[-array] : Returs the resuls as a list of vectors (more efficient)

Examples:

in: GiD_Info Mesh

out: "1 Tetrahedra Triangle"

in: GiD_Info Mesh MaxNumNodes

out: "1623"

7.3.9 coordinates

GiD_Info Coordinates point_id|node_id [geometry|mesh]

This command returns the coordinates (x,y,z) of a given point or node.

7.3.10 variables

GiD_Info variables "variable_name"

This command returns the value of the variable indicated.

GiD variables can be found in the Right buttons menu (see UTILITIES>Tools from
Reference Manual), under the option Utilities -> Variables.

7.3.11 localaxes

GiD_Info localaxes ?<name>? ?-localaxesmat?info localaxes

Returns a list with all the user defined local axes.

info localaxes <name> returns the parameters (three euler angles and the center) that
define the local axes called <name>.

info localaxes <name> -localaxesmat instead of returning the three euler angles, it returns
the nine numbers that define the transformation matrix of a vector from the local axes
system to the global one.

126ortholimits

7.3.12 ortholimits

GiD_Info ortholimits

This command returns a list (Left, Right, Bottom, Top, Near, Far, Ext) of the limits of the
geometry in the project.

In perspective mode near and far have the perspective distance substracted.

7.3.13 perspectivefactor

GiD_Info perspectivefactor

This command returns which perspective factor is currently being used in the project.

7.3.14 graphcenter

GiD_Info graphcenter

This command returns the coordinates (x,y,z) of the center of rotation.

7.3.15 meshquality

GiD_Info MeshQuality

This command returns a list of numbers. These numbers are the Y relative values of the
graph shown in the option Meshing -> Mesh quality (see MESH>Mesh Quality from
Reference Manual) and two additional real numbers with the minimum and maximum
limits.

This command has the following arguments:

MinAngle / MaxAngle / ElemSize / ElemMinEdge / ElemMaxEdge /
ElemShapeQuality / ElemMinJacobian / Radius: quality criterion.
Linear / Triangle / Tetrahedra / Quadrilateral / Hexahedra / Prism /
Pyramid / Point / Sphere / Circle: type of element.
<min_value>: e.g. minimum number of degrees accepted.
<max_value>: e.g. maximum number of degrees accepted.

 if min_value and max_value are set to 0 then limits will be automatically set to the
minimum and maximum of the mesh

<num_divisions>: number of divisions.

Example:

in: GiD_Info MeshQuality MinAngle Triangle 20 60 4

out: "13 34 23 0 20.0 60.0"

7.3.16 postprocess

GiD_Info postproces

GiD_Info postproces arewein

This command returns YES if the user is in the GiD postprocess, and NO, if not.

127postprocess

GiD_Info postprocess get

This command returns information about the GiD postprocess. The following options are
available:

all_volumes: Returns a list of all volumes.
all_surfaces: Returns a list of all surfaces.
all_cuts: Returns a list of all cuts.
all_graphs: Returns a list of all graphs.
all_volumes_colors: Returns a list of the volume colors used in the project. Colors
are represented in RGB hexadecimal format. Example: #000000 would be black, and
#FFFFFF would be white.
all_surfaces_colors: Returns a list of the surface colors used in the project. Colors
are represented in RGB hexadecimal format. Example: #000000 would be black, and
#FFFFFF would be white.
all_cuts_colors : Returns a list of the cut colors used in the project. Colors are
represented in RGB hexadecimal format. Example: #000000 would be black, and
#FFFFFF would be white.
cur_volumes: Returns a list of the visible volumes.
cur_surfaces: Returns a list of the visible surfaces.
cur_cuts: Returns a list of the visible cuts.
all_display_styles: Returns a list of all types of display styles available.
cur_display_style: Returns the current display style.
all_display_renders: Returns a list of all types of rendering available.
cur_display_render: Returns the current rendering method.
all_display_culling: Returns a list of all types of culling available.
cur_display_culling: Returns the current culling visualization.
cur_display_transparence: Returns Opaque or Transparent depending on the
current transparency. Transparency is chosen by the user in the Select & Display
Style window.
cur_display_body_type: Returns Massive if the option Massive is selected in the
Select & Display Style window. It returns Hollow if that option is not activated.
all_analysis: Returns a list of all analyses in the project.
all_steps "analysis_name": Returns the number of steps of "analysis_name".
cur_analysis: Returns the name of the current analysis.
cur_step: Returns the current step.
all_results_views: Returns all available result views.
cur_results_view: Returns the current result view.
cur_results_list : This option has one more argument: the kind of result
visualization must be given. The available kinds of result visualization are given by
the option all_results_views. The command returns a list of all the results that can
be represented with that visualization in the current step of the current analysis.
results_list: This option has three arguments: the first argument is the kind of
result visualization. The available kinds of result visualization are given by the option
all_results_views. The second argument is the analysis name. The third argument
is the step number. The command returns a list of all the results that can be

128postprocess

represented with that visualization in the given step.
cur_result: Returns the current selected result. The kind of result is selected by the
user in the View results window.
cur_components_list "result_name": Returns a list of all the components of the
result "result_name".
cur_component: Returns the current component of the current result.
main_geom_state: Returns whether the main geometry is Deformed or Original
main_geom_all_deform: Returns a list of all the deformation variables (vectors) of
the main geometry.
main_geom_cur_deform: Returns the current deformation variable (vectors) of the
main geometry.
main_geom_cur_step: Returns the main geometry current step.
main_geom_cur_anal: Returns the main geometry current analysis.
main_geom_cur_factor: Returns the main geometry current deformation factor.
show_geom_state: Returns whether the reference geometry is Deformed or
Original.
show_geom_cur_deform: Returns the current deformation variable (vectors) of
the reference geometry.
show_geom_cur_analysis: Returns the reference geometry current analysis.
show_geom_cur_step: Returns the reference geometry current step.
iso_all_display_styles: Returns a list of all available display styles for isosurfaces.
iso_cur_display_style: Returns the current display style for isosurfaces.
iso_all_display_renders: Returns a list of all types of rendering available for
isosurfaces.
iso_cur_display_render: Returns the current rendering method for isosurfaces.
iso_cur_display_transparence: Returns Opaque or Transparent depending on
the current transparency of isosurfaces.
contour_limits: Returns the minimum and maximum value of the contour limits.
Before each value, the word STD appears if the contour limit value is the default
value, and USER if it is defined by the user.
animationformat: Returns the default animation format.
cur_show_conditions: Returns the option selected in the Conditions combo box of
the Select & Display Style window. (Possible values: Geometry Mesh None)
all_show_conditions: Returns all the options available in the Conditions combo
box of the Select & Display Style window. (Geometry Mesh None)
cur_contour_limits: Returns the minimum and maximum value of the current
value.
current_color_scale: Returns a list of the colors used for the color scale; the first
element of the list is the number of colors. Each color is represented in RGB
hexadecimal format. Example: #000000 would be black, and #FFFFFF would be
white.

7.3.17 automatictolerance

GiD_Info AutomaticTolerance

This command returns the value of the Import Tolerance used in the project. This value is

129automatictolerance

defined in the Preferences window under Import.

7.3.18 rgbdefaultbackground

GiD_Info RGBDefaultBackground

This command returns the default background color in RGB. The format is three 8 bit
numbers separated by #. Example: 255#255#255 would be white.

7.3.19 list_entities

GiD_Info list_entities

GiD_Info list_entities Status|PreStatus|PostStatus

This command returns a list with general information about the current GiD project.

PreStatus ask for the information of preprocess

PostStatus ask for the information of postprocess

Status return the infomation of pre or postprocess depending of where are now, in pre or
post mode.

Example:

in: d§a|f¬¤­=ª§±²|£¬²§²§£±=m°£p²~²³±=

out:

Project name: UNNAMED

Problem type: UNKNOWN

Changes to save(0/1): 1

Necessary to mesh again (0/1): 1

Using LAYER: NONE

Interval 1 of 1 intervals

Degree of elements is: Normal

Using now mode(geometry/mesh): geometry

number of points: 6

number of points with 2 higher entities: 6

number of points with 0 conditions: 6

number of lines: 6

number of lines with 1 higher entities: 6

number of lines with 0 conditions: 6

number of surfaces: 1

number of surfaces with 0 higher entities: 1

130list_entities

number of surfaces with 0 conditions: 1

number of volumes: 0

number of nodes: 8

number of nodes with 0 conditions: 8

number of Triangle elements: 6

number of elements with 0 conditions: 6

Total number of elements: 6

Last size used for meshing: 10

Internal information:

Total MeshingData:0 Active: 0 0%

GiD_Info list_entities

This command returns information about entities.

It has the following arguments:

Points / Lines / Surfaces / Volumes / Dimensions / Nodes / Elements /
Results: Type of entity or Results. Note: If the user is postprocessing in GiD, the
information returned by Nodes/Elements concerns the nodes and elements in
postprocess, including its results information. To access preprocess information about
the preprocess mesh, the following entity keywords should be used:
PreNodes/PreElements.
entity_id: The number of an entity. It is also possible to enter a list of entities (e.g.:
2 3 6 45), a range of entities (e.g.: entities from 3 to 45, would be 3:45) or a layer
(e.g.: layer:layer_name).

Using "list_entities Results" you must also specify <analysis_name> <step>
<result_name> <indexes>With the option -more, more information is returned about the
entity. The -more option used with lines returns the length of the line, its radius (arcs),
and the list of surfaces which are higher entities of that line; used with elements it returns
the type of element, its number of nodes and its volume.

Example 1:

in: d§a|f¬¤­=ª§±²|£¬²§²§£±=m­§¬²±=O=N=

out:

POINT

Num: 2 HigherEntity: 1 conditions: 0 material: 0

LAYER: car_lines

Coord: -11.767595 -2.403779 0.000000

END POINT

POINT

131list_entities

Num: 1 HigherEntity: 1 conditions: 0 material: 0

LAYER: car_lines

Coord: -13.514935 2.563781 0.000000

END POINT

Example 2:

in: d§a|f¬¤­=ª§±²|£¬²§²§£±=ª§¬£±=ª~·£°W¡~°|ª§¬£±=

out:

STLINE

Num: 1 HigherEntity: 0 conditions: 0 material: 0

LAYER: car_lines

Points: 1 2

END STLINE

STLINE

Num: 13 HigherEntity: 0 conditions: 0 material: 0

LAYER: car_lines

Points: 13 14

END STLINE

Example 3 (using -more):

in: d§a|f¬¤­=ª§±²|£¬²§²§£±=J«­°£=i§¬£±=O=

out:

STLINE

Num: 2 HigherEntity: 2 conditions: 0 material: 0

LAYER: Layer0

Points: 2 3

END STLINE

LINE (more)

Length=3.1848 Radius=100000

Higher entities surfaces: 1 3

END LINE

7.3.20 parametric

GiD_Info parametric

This command returns geometric information (coordinates, derivates, etc.) about
parametric lines or surfaces.

For lines it has the following syntax:

132parametric

GiD_Info parametric line entity_id coord | deriv_t | deriv_tt | t_fromcoord |
t_fromrelativelength | length_to_t | t | x y z

And for surfaces:

GiD_Info parametric surface entity_id coord | deriv_u | deriv_v | deriv_uu |
deriv_vv | deriv_uv | normal | uv_fromcoord | maincurvatures u v | x y z

The result for each argument is:

line|surface: Type of entity.
entity_id: The number of an entity.
coord: 3D coordinate of the point with parameter t (line) or u,v (surface).
deriv_t: First curve derivative at parameter t.
deriv_tt: Second curve derivative at parameter t.
t_fromcoord: t parameter for a 3D point.
t_fromrelativelength: parameter corresponding to a relative (from 0 to 1) arc
length t
length_to_t: lenght of the curve until the parameter t (if t=1.0 then it is the total
lengh)
deriv_u,deriv_v: First partial u or v surface derivatives.
deriv_uu,deriv_vv,deriv_uv: Second surface partial derivatives.
normal: Unitary surface normal at u,v parameters.
uv_fromcoord: u,v space parameters for a 3D point.
maincurvatures: return a list with 8 numbers: v1x v1y v1z v2x v2y v2z c1 c2

v1x v1y v1z : first main curvature vector direction (normalized)

v2x v2y v2z : second main curvature vector direction (normalized)

c1 c2: main curvature values

Note: The vector derivatives are not normalized.

Example:

in: d§a|f¬¤­=®~°~«£²°§¡=ª§¬£=OS=¢£°§´|²=MKOR=

out: UKMSMUSQ=JNKQSPVUM=MKMMMMMM

7.3.21 check

GiD_Info check

This command returns some specialized entities check.

For lines it has the following syntax:

GiD_Info check line <entity_id> isclosed

For surfaces:

GiD_Info check surface <entity_id> isclosed | isdegeneratedboundary |
selfintersection

And for volumes:

GiD_Info check volume <entity_id> orientation | boundaryclose

133check

The result for each argument is:

line | surface | volume: Type of entity.
<entity_id>: The number of an entity.
isclosed: For lines: 1 if start point is equal to end point, 0 otherwise. For surfaces: A
surface is closed if its coordinate curves (of the full underlying surface) with
parameter 0 and 1 are equal. It returns a bit encoded combination of closed
directions: 0 if it is not closed, 1 if it is closed in u, 2 if it is closed in v, 3 if it is closed
in both u and v directions.
isdegeneratedboundary: A surface is degenerated if some boundary in parameter
space (south, east, north or west) becomes a point in 3d space. It returns a bit
encoded combination of degenerated boundaries, for example: 0 if it is not
degenerated, 9=2^0+2^3 if south and west boundaries are degenerated.
selfintersection: Intersections check between surface boundary lines. It returns a
list of detected intersections. Each item contains the two line numbers and their
parameter values.
orientation: For volumes, it returns a two-item list. The first item is the number of
bad oriented volume surfaces, and the second item is a list of these surfaces'
numbers.
boundaryclose: For volumes, a boundary is topologically closed if each line is shared
by two volume surfaces. It returns 0 if it is not closed and must be corrected, or 1 if it
is closed.

Example:

in: GiD_Info check volume 5 orientation

out: 2 {4 38}

7.3.22 listmassproperties

GiD_Info ListMassProperties

This command returns properties of the selected entities.

It returns the length if entities are lines, area if surfaces, volume if volumes, or the
center of gravity if entities are nodes or elements. It has the following arguments:

Points/Lines/Surfaces/Volumes/Nodes/Elements: Type of entity.
entity_id: The number of an entity. It is also possible to enter a list of entities (e.g.: 2
3 6 45) or a range of entities (e.g.: entities from 3 to 45, would be 3:45).

Example:

in: d§a|f¬¤­=i§±²j~±±m°­®£°²§£±=i§¬£±=NP=NR=

out:

LINES

n. Length

13 9.876855

15 9.913899

134listmassproperties

Selected 2 figures

Total Length=19.790754

7.3.23 problemtypepath

GiD_Info problemtypepath

This command returns the absolute path to the current problem type.

7.3.24 gidversion

GiD_Info GiDVersion

This command returns the GiD version number. For example 10.0.8

7.3.25 view

GiD_Info view

This command returns the current view parameters. Something like:

{x -13.41030216217041 13.41030216217041} {y 10.724431991577148
-10.724431991577148} {z -30.0 30.0} {e 10.0} {v 0.0 0.0 0.0} {r 1.0}

 {m 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0} {c 0.0 0.0 0.0} {pd
0.0} {pno 0.0} {pfo 0.0} {pf 4.0} {pv 0.0} {NowUse 0}

 {DrawingType 0} {LightVector 90.0 90.0 150.0 0.0}

See VIEW>View entry>Save/Read View of Reference Manual for a brief explanation of this
parameters

7.3.26 ispointinside

GiD_Info IsPointInside

GiD_Info IsPointInside ?-tolerance <tol>? Line|Surface|Volume <num> {<x>
<y> <z>}

This commands returns 1 if the point {x y z} is inside the specified volume/surface/curve,
or 0 if lies outside.

7.4 Special Tcl commands

GiD add to the standard Tcl/Tk keywords some extra commands, to do specific thinks.

7.4.1 Geometry

GiD_Geometry create|delete|get|list point|line|surface|volume <num>|append
<data>

To create, delete, get data or list the identifiers of geometric entities:

135Geometry

<num>|append: <num> is the entity identifier (integer > 0). You can use the word
'append' to set a new number automatically.
<data>: is all the geometric definition data (create) or a selection specification
(delete, get or list):

create: to make new geometric entities

GiD_Geometry create volume <num> | append layer numsurfaces {surface1 verso1}
... ?contactvolume <transformation_matrix>?

for contactvolume is necessary to specify the <transformation_matrix> : a vector of 16
reals representing a 4x4 transformation matrix that maps surface1 into surface2

GiD_Geometry create surface <num> | append plsurface | nurbssurface |
coonsurface | meshsurface | contactsurface layer numlines ?<nurbs_data>? {line1
verso1} ... <geometrical_data>

 <nurbs_data> must be provided only for NURBS surfaces and are this variables:

 u_degree v_degree numpoints_u numpoints_v istrimmed isrational

 <geometrical data> depends of each entity type (see get command)

GiD_Geometry create line <num>|append nurbsline layer inipoint endpoint degree
numpoints isrational {point1_x point1_y point1_z ?point1_w?} ... knot_1 ...

Instead the NURBS parameters is possible to create a curve that interpolates a list of
points (also tangents at start and end can be specified)

GiD_Geometry create line <num> | append nurbsline layer inipoint endpoint
-interpolate numpoints {p1_x p1_y p1_z} ... {pn_x pn_y pn_z} ?-tangents {t0_x t0_y
t0_z} {t1_x t1_y t1_z}?

GiD_Geometry create line <num>|append stline layer inipoint endpoint
GiD_Geometry create point <num>|append layer point_x point_y point_z

delete: to erase model entities

GiD_Geometry delete point|line|surface|volume <args> with <args>: num
numa:numb numa: layer:layer_name

get: to obtain all the geometrical data to define a single entity

GiD_Geometry get point|line|surface|volume <args> with <args>: num

GiD_Geometry get point will return:

<layer> <geometrical data>

<layer> is the layer name

<geometrical data> the coordinates x y z

GiD_Geometry get line will return:

<type> <layer> <p1> <p2> <geometrical data>

<type> can be: stline, nurbsline, arcline, polyline

<layer> is the layer name

136Geometry

<p1> identifier of start point

<p2> identifier of end point

<geometrical data> depends of each entity type

 stline: nothing

 nurbsline: <d> <n> <rat> {x y z ?w?}1 ... {x y z ?w?}n <k0> ... <kn+d>

 <d>degree

 <n>number of control points

 <rat> 1 if rational, else 0

 {xi yi zi ?wi?} control points coordinates. If rational wi is the weight

 <ki> knots

 arcline: {xc yc} <r> <sa> <ea> {m11 ... m44}

 {xc yc} 2D center

 <r> radius

 <sa> start angle (rad)

 <ea> end angle (rad)

 {m11 ... m44} transformation 4x4 matrix (the identity for a 2D case)

 m11 ...m33 is a rotation 3x3 matrix

 m14 ...m34 is a translation 3x1 vector

 m44 is an scale factor

 m41 ... m43 must be 0

 polyline: not implemented

GiD_Geometry get surface will return:

<type> <layer> <nl> ?<nurbs_data>? {l1 o1} ... {lnl onl} <geometrical data>

<type> can be: nurbssurface plsurface coonsurface meshsurface

<layer> is the layer name

<nl> number of boundary lines (including holes)

<nurbs_data> only for NURBS surfaces (<du> <dv> <nu> <nv> <istrimmed>
<isrational>)

{li oi} identifier of line and its orientation for the surface (1 if opposite to the line
advance, 0 else)

Note: turning left of a line with orientation 0 we go inside the surface.

<geometrical data> depends of each entity type

 plsurface: nothing

 coonsurface: nothing

 nurbssurface {x y z ?w?}1 ... {x y z ?w?}nuxnv <ku0> ... <kunu+du> <kv0> ...

137Geometry

<kvnv+dv>

 <du> <dv>degree in u, v direction

 <nu> <nv>number of control points in each direction

 <ratu> <ratv> 1 if rational, 0 else

 {xi yi zi ?wi?} control points coordinates. If rational wi is the weight

 <kui> <kvi> knots in each direction

 meshsurface: nn ne nnode {x1 y1 z1 ... x nn y nn z nn } {a1 b1 c1 ?d1 ? ...

a
ne
 b
ne
 c
ne
 ?dne?}

 nn: number of nodes

 ne: number or elements (triangles or quadrilaterals)

 nnode: number of nodes by element: 3 or 4

 xi yi zi: coordinates

 ai bi ci di: connectivities (di only for quadrilaterals)

GiD_Geometry get volume will return:

<layer> <ns> {s1 o1} ... {snl onl}

<layer> is the layer name

<ns> number of boundary surfaces (including holes)

{si oi} identifier of surface and its orientation for the volume (1 if opposite to the
surface normal, 0 else)

Note: the normal of a surface with orientation 0 points inside the volume

list: to get a list of entity identifiers of a range or inside some layer

GiD_Geometry list point | line | surface | volume <args>

 with <args>: <num> | <num_min>:<num_max> | <num_min>:end

 layer:<layer_name>

 unrendered (only valid for surface)

Examples:

Creation of a new NURBS surface:

d§a|d£­«£²°·=¡°£~²£=±³°¤~¡£=N=¬³° ±±³°¤~¡£=i~·£°M=Q=N=N=O=O=M=M=¹N=N»=¹Q=N»=
¹P=N»=¹O=N»=y

¹MKNTTVV=SKUSMUQN=MKM»=¹JUKQPMQOOMM=SKUSMUQNVV=MKM»=¹MKNTTVVQMM=MKVPURNM=
MKM»=y

=====¹JUKQPMQO=MKVPURNM=MKM»=MKM=MKM=NKM=NKM=MKM=MKM=NKM=NKM

 Get the list of points of the layer named 'layer_name':

d§a|d£­«£²°·=ª§±²=®­§¬²=ª~·£°Wª~·£°|¬~«£

138Geometry

Get the list of problematic surfaces that couldn't be rendered:

d§a|d£­«£²°·=ª§±²=±³°¤~¡£=³¬°£¬¢£°£¢

7.4.2 Mesh

GiD_Mesh create|delete|edit|get node|element <num>|append <elemtype>
<nnode> <N1 ... Nnnode> <radius> <nx> <ny> <nz> ?<matname>? | <x y z>

To create, delete, modify or know information about mesh nodes or elements of the
preprocess:

<num>|append: <num> is the identifier (integer > 0) for the node or element. You
can use the word 'append' to set a new number automatically. The number of the
created, deleted or modified entity is returned as the result. When deleting, it is
possible to use a list of entities;
<elemtype>: must be one of "point | linear | triangle | quadrilateral | tetrahedra |
hexahedra | prism | pyramid | sphere | circle"
<nnode> is the number of nodes an element has
<N1 ... Nnnode> is a Tcl list with the element connectivities
<radius> is the element radius, only for sphere and circle elements
<nx> <ny> <nz> is the normal of the plane that contain the circle, must be
specified for circle elements only
<matname> is the optional element material name
<x y z> are the node coordinates. If the z coordinate is missing, it is set to z=0.0.

Examples:

d§a|j£±¦=¡°£~²£=¬­¢£=~®®£¬¢=¹NKR=PKQ£O=SKM»
d§a|j£±¦=¡°£~²£=£ª£«£¬²=RU=²°§~¬¥ª£=P=¹T=NR=O»=±²££ª
d§a|j£±¦=¢£ª£²£=£ª£«£¬²=¹RU=SM»

GiD_Cartesian get|set
ngridpoints|boxsize|corner|dimension|coordinates|iscartesian <values>

To get and set cartesian grid properties

ngridpoints: the number of values of the grid axis on each direction x, y,z (3
integers)
boxsize: the size of the box of the grid on each direction (3 reals)
corner: the location of the lower-left corner of the grid box (3 reals)
dimension: the dimension of the grid: 2 for 2D or 3 for 3D
coordinates: the list of grid coordinates on each direction (nx+ny+nz reals)
iscartesian: return 1 ir current mesh is cartesian, 0 else.

GiD_MeshPost create <meshname> <elemtype> <elementnnodes>
?-zero_based_array? <node_ids> <nodes> <element_ids> <elements>
?<radius+?normals?>? ?<r g b a>?

To create a postprocess mesh.

139Mesh

This command create all mesh nodes and elements in a single step (unlike GiD_Mesh that
create each node or element one by one)

<meshname>: the name of the mesh
<elemtype>: must be one of "point | linear | triangle | quadrilateral | tetrahedra |
hexahedra | prism | pyramid | sphere | circle"
<elementnnodes>: is the number of nodes an element has. All elements of the
mesh must have the same number of nodes.
-zero_based_array: optional flag. By default node and element indexes start from
1, but setting this flag indexes must start from 0.
<node_ids>: list of node indentifiers. If it is an empty list them numeration is
implicitly increasing.
<nodes>: a list of real numbers with the thee coordinates of each node {x0 y0 z0 ...

xnn-1 ynn-1 znn-1}

<element_ids>: list of element indentifiers. If it is an empty list them numeration is
implicitly increasing.
 <elements>: a list of integers with the <elementnnodes> nodes of each element:
the id of each node is the location on the vector of nodes, starting from 0
 <radius+normals>:
<radius>:only for spheres. Is a list of reals with the radius or each sphere {r0 ...

rne-1}

<normals> :only for circles. Is a list of reals with the radius and normal to the
plane or each circle {r0 nx0 ny0 nz0 ... rne-1 nxne-1 nyne-1 nzne-1}

<r g b a>: optional color components, to set the mesh color. r g b a are the red,
green, blue and alpha transparency components of the color, must be real numbers
from 0.0 to 1.0. If the color is not specified, an automatic color will be set.

7.4.3 Data

GiD-Tcl special commands to manage materials, conditions, intervals, general data or local
axes:

GiD_CreateData create|delete material ?<basename>? <name> ?<values>?

To create or delete materials:

<basename> this only applies to the create operation, and is the base material from
which the new material is derived;
<name> is the name of material itself;
<values> is a list of all field values for the new material.

Example:

d§a|`°£~²£a~²~=¡°£~²£=«~²£°§~ª=p²££ª=^ª³«§¬§³«=¹PKR=Q=MKO»=
d§a|`°£~²£a~²~=¢£ª£²£=«~²£°§~ª=^ª³«§¬§³«

GiD_AssignData material|condition <name> <over> ?<values>? <entities>

To assign materials or conditions over entities:

<name> is the name of the material or condition;

140Data

<over> must be: points, lines, surfaces, volumes, layers, nodes, elements,
body_elements, or face_elements (elements is equivalent to body_elements);
<newvalues> is only required for conditions. If it is set to "" then the default values
are used;
<entities> a list of entities (it is valid to use ranges as a:b ,can use "all" to select
everything, "end" to specify the last entity, layer:<layername> to select the entities in
this layer) ; if <over> is face_elements then you must specify a list of "entitynumface"
instead just "entity".

Example:

d§a|^±±§¥¬a~²~=«~²£°§~ª±=p²££ª=p³°¤~¡£=¹OW£¬¢»=
d§a|^±±§¥¬a~²~=¡­¬¢§²§­¬=m­§¬²Ji­~¢=k­¢£±=¹PKR=OKN=UKM»=~ªª
d§a|^±±§¥¬a~²~=¡­¬¢§²§­¬=c~¡£Ji­~¢=¤~¡£|£ª£«£¬²±=¹PKR=OKN=UKM»=¹NR=N=NU=N=OM=
O»

GiD_UnAssignData material|condition <name> <over> <entities> ?wherefield
<fieldname> <fieldvalue>?

To unassign materials or conditions of some entities:

<name> is the name of the material or condition; Can use "*" to match all materials
<over> must be: points, lines, surfaces, volumes, layers, nodes, elements,
body_elements, or face_elements (elements is equivalent to body_elements);
<entities> a list of entities (it is valid to use ranges as a:b ,can use "all" to select
everything, "end" to specify the last entity, layer:<layername> to select the entities in
this layer) ; if <over> is face_elements then you must specify a list of "entitynumface"
instead just "entity".
wherefield <fieldname> <fieldvalue> To unassign this condition olny for the entities
where the field named 'fieldname' has the value 'fieldvalue'

Example:

d§a|r¬^±±§¥¬a~²~=«~²£°§~ª±=G=p³°¤~¡£=¹£¬¢JRW£¬¢»
d§a|r¬^±±§¥¬a~²~=¡­¬¢§²§­¬=m­§¬²Ji­~¢=k­¢£±=ª~·£°Wi~·£°M
d§a|r¬^±±§¥¬a~²~=¡­¬¢§²§­¬=c~¡£Ji­~¢=¤~¡£|£ª£«£¬²±=¹NR=N=NU=N=OM=O»

GiD_ModifyData materials|intvdata|gendata ?<name>? <values>

To change all field values of materials, interval data or general data:

<name> is the material name or interval number;
<values> is a list of all the new field values for the material, interval data or general
data.

Example:

d§a|j­¢§¤·a~²~=«~²£°§~ª±=p²££ª=¹OKN£S=MKP=TUMM»=
d§a|j­¢§¤·a~²~=§¬²´¢~²~=N=KKK=
d§a|j­¢§¤·a~²~=¥£¬¢~²~=KKK

141Data

GiD_AccessValue set|get materials|conditions|intvdata|gendata ?<name>?
<question> ?<attribute>? <value>

To change only some field values of materials, interval data or general data:

<name> is the material, condition name or interval number (not necessary for
gendata);
<question> is a field name;
<attribute> is the attribute name to be changed (STATE, HELP, etc.) instead of the
field value;
<value> is the new field or attribute value.

Example:

d§a|^¡¡£±±s~ª³£=±£²=¥£¬¢~²=p­ª´£°=a§°£¡²

GiD_IntervalData <mode> <number>|?copyconditions?

To create, delete or set interval data;

<mode> must be 'create', 'delete' or 'set';
<number> is the interval number (integer >=1). Create returns the number of the
newly created interval and can optionally use 'copyconditions' to copy to the new interval
the conditions of the current one.

For set mode, if <number> is not supplied, the current interval number is returned.

Example:

±£²=¡³°°£¬²=xd§a|f¬²£°´~ªa~²~=±£²z=
d§a|f¬²£°´~ªa~²~=±£²=O=
±£²=¬£µ¬³«=xd§a|f¬²£°´~ªa~²~=¡°£~²£z=
±£²=¬£µ¬³«=xd§a|f¬²£°´~ªa~²~=¡°£~²£=¡­®·¡­¬¢§²§­¬±z

GiD_LocalAxes <mode> <name> ?<type>? <Cx Cy Cz> <PAxex PAxey PAxez>
<PPlanex PPlaney PPlanez>?

To create, delete or modify local axes:

<mode>: must be one of "create|delete|edit|exists", which correspond to the
operations: create, delete, edit or exists;
<name>: is the name of local axes to be created or deleted;
<type>: must be one of "rectangular|cylindrical|spherical C_XZ_Z|C_XY_X". Currently,
GiD only supports rectangular axes. C_XZ_Z is an optional word to specify one point
over the XZ plane and another over the Z axis (default). C_XY_X is an optional word to
specify one point over the XY plane and another over the X axis;
<Cx Cy Cz> is a Tcl list with the real coordinates of the local axes origin;
<PAxex PAxey PAxez> is a Tcl list with the coordinates of a point located over the Z'
local axis (where Z' is positive). The coordinates must be separated by a space. If the z
coordinate is missing, it is set to z=0.0;
<PPlanex PPlaney PPlanez> is a Tcl list with the coordinates of a point located over
the Z'X'half-plane (where X' is positive).

142Data

For the 'exists' operation, if only the <name> field is specified, 1 is returned if this name
exists, and 0 if it does not. If the other values are also apecified, <name> is ignored.

The value returned is:

-1 if the global axes match;

-2 if the automatic local axes match;

-3 if the automatic alternative local axes match;

0 if it does not match with any axes;

<n> if the user-defined number <n> (n>0) local axes match.

Example:

d§a|i­¡~ª^¶£±=¡°£~²£=?~¶£±|N?=°£¡²~¬¥³ª~°=`|uv|u=¹M=M=M»=¹M=N=M»=¹N=M=M»=
d§a|i­¡~ª^¶£±=¢£ª£²£=~¶£±|N=
d§a|i­¡~ª^¶£±=£¶§±²±=~¶£±|N
d§a|i­¡~ª^¶£±=£¶§±²±=??=°£¡²~¬¥³ª~°=`|uv|u=¹M=M=M»=¹M=N=M»=¹N=M=M»=

this last sample returns -1 (equivalent to global axis)

7.4.4 Results

GiD_Result create|delete|get|get_nodes|gauss_point|result_ranges_table
?-array? <data>

To create, delete or get postprocess results:

GiD_Result create ?-array? {Result header} ?{Unit <unit_name>}?
?{componentNames name1 ...}? {entity_id scalar|vector|matrix_values}
{...} {...} : these creation parameters are the same as for the postprocess results
format (see Result -pag. 85- of Postprocess results format: ProjectName.post.res
-pag. 78-) where each line is passed as Tcl list argument of this command;

Optionally the names of the result's components could be specified, with the
componentNames item, and the unit label of the result with the Unit item

if the -array flag is used (recommended for efficiency), then the syntax of the data
changes. Instead to multiple items {id1 vx1 vy1 ...} ... {idn vxn vyn} a single item with
sublists is required, {{id1 ... idn} {{vx1...vxn} {vy1...vyn}}}, where idi are the
integers of the node or element where the result are defined, and vi are the real values.
The amount of values depends on the type of result: 1 for Scalar, 2 for ComplexScalar,
3 for Vector (4 if signed modulus is provided), 6 for Matrix.

GiD_Result delete {Result_name result_analysis step_value} : deletes one
result;
GiD_Result get [-max | -min | -compmax | -compmin | -info -array]
{Result_name result_analysis step_value} : retrieves the results value list of
the specified result; or if one of the -max, -min, -compmax, -compmin, or
-info flags was specified: the minimum/maximum value of the result, every
minimum/maximum of the components of the result, or the header information of the

143Results

result (with type and location) is retrieved, respectively;
GiD_Result get_nodes: returns a list of nodes and their coordinates.
GiD_Result gauss_point create|get|names|delete <name> <elemtype>
<npoint> ?-nodes_included? <coordinates> ?<mesh_name>?
create <name> <elemtype> <npoint> ?-nodes_included? <coordinates>
?<mesh_name>?

Define a new kind of gauss point where element results could be related.

<name> is the gauss point name. Internal Gauss points are implicitly defined, and
its key names (GP_LINEAR_1,GP_TRIANGLE_1,...) are reserved words and can't be
used to create new gauss points or be deleted. (seeGauss Points -pag. 79-)

<elemtype> must be one of "point | linear | triangle | quadrilateral | tetrahedra |
hexahedra | prism | pyramid | sphere | circle". (see Postprocess mesh format:
ProjectName.post.msh -pag. 98-)

<npoint> number of gauss points of the element

-nodes_included :optional word, only for line elements, to specify that start and end
points are considered (by default are not included)

<coordinates> : vector with the local coordinates to place the gauss points: 2
coordinates by node for surface elements, 3 coordinates for volume elements. For
line elements now is not possible to specify its coordinates, the n points will be
equispaced.

<mesh_name>: optional mesh name where this definition is applied, by default it is
applied to all meshes

get <name>

Return the information of this gauss point

names

Return a list with the names of all gauss points defined

delete <name>

GiD_Result result_ranges_table create|get|names|delete <name> {<min1>
<max1> <label1> ... <minn> <maxn> <labeln> }
create <name> {<label1> <min1> <max1> ... <labeln> <minn> <maxn>}

Define a new kind of result ranges table to map ranges of result values to labels.

<name> is the result ranges table name.

<mini> <maxi> <labeli>: is the label to show for result values from min to max

get <name>

Return the information of this result ranges table

names

Return a list with the names of all result ranges tables defined

delete <name>

144Results

-array flag can be specified, for create and get subcommands, to use list of vectors to
handle the information in a more efficient way

Examples:

d§a|o£±³ª²= ¡°£~²£= J~°°~·= ¹o£±³ª²= ?j·s£¡k­¢~ª?= ?i­~¢= ~¬~ª·±§±?=NM= s£¡²­°=
l¬k­¢£±»= ¹`­«®­¬£¬²k~«£±= ?s¶?= ?s·?= ?s¸?= ?º´£ª­¡§²·º?»= ¹¹N= P»= ¹¹OKM£JN=
JPKR£JN»=¹OKM£JN=QKR£JN»=¹MKQ=JOKN»»»
d§a|o£±³ª²=¡°£~²£=¹o£±³ª²=?o£±=k­¢~ª=N?=?i­~¢=~¬~ª·±§±?=NKM=p¡~ª~°=l¬k­¢£±»=
¹N=O»=¹O=O»=¹NNP=O»=¹P=R»=¹NNO=Q»
d§a|o£±³ª²=¥~³±±|®­§¬²=¡°£~²£=dmqN=n³~¢°§ª~²£°~ª=N=¹MKR=MKR»
d§a|o£±³ª²= ¡°£~²£= ¹o£±³ª²= ?o£±= d~³±±= N?= ?i­~¢= ~¬~ª·±§±?= NKM= p¡~ª~°=
l¬d~³±±m­§¬²±=dmqN»=¹NSR=O»=¹O»=¹P»=¹NSQ=R»=¹Q»=¹P»
d§a|o£±³ª²=¥£²=¹?o£±=k­¢~ª=N?=?i­~¢=~¬~ª·±§±?=Q»
d§a|o£±³ª²=¢£ª£²£=¹?o£±=k­¢~ª=N?=?i­~¢=~¬~ª·±§±?=Q»

d§a|o£±³ª²= ¡°£~²£= ¹o£±³ª²=?o£±=k­¢~ª=O?=?i­~¢= ~¬~ª·±§±?=Q= s£¡²­°= l¬k­¢£±»=
¹`­«®­¬£¬²k~«£±=?¶=¡­«®?=?·=¡­«®?=?¸=¡­«®?=?«­¢³ª³±?»=¹N=MKP=MKR=MKN=MKRVN»=
¹O=OKR=MKU=JMKP=OKSQN»
d§a|o£±³ª²= ¡°£~²£= J~°°~·= ¹o£±³ª²= ?o£±= k­¢~ª=O?= ?i­~¢= ~¬~ª·±§±?=Q= s£¡²­°=
l¬k­¢£±»=¹`­«®­¬£¬²k~«£±=?¶=¡­«®?=?·=¡­«®?=?¸=¡­«®?=?«­¢³ª³±?»=¹¹N=O»=¹¹MKP=
OKR»=¹MKR=MKU»=¹MKN=JMKP»=¹MKRVN=OKSQN»»»

7.4.5 Graphs

GiD_Graph list|show|hide|clear|get|delete|create

To create, delete or get postprocess graphs:

list : gets a list of the existent graphs, an empty list if there is no graph;
show : switches the graphic view and shows the graphs;
hide : hides the graphs and switches back to mesh view;
clear : delete all graphs in GiD;
get <graph_name> : gets a list with the values of the graph with name
"graph_name", the values are the same used to create a graph: <label_x> <label_y>
<x_values> <y_values>
delete <graph_name> : deletes the graph "graph_name" causing an error if does not
exists;
create <graph_name> <label_x> <label_y> <x_values> <y_values> <x_unit>
<y_unit> : creates the graph "graph_name" with the provided information, causing an
error if the graph already exists: for instance the graph of the picture was created with

GiD_Graph create "My graph" "x values" "y values" {0 1 2 3} {0.5 2.1 -4.5 8.8}
"" ""

145Graphs

7.4.6 OpenGL

GiD_OpenGL

It is possible to use OpenGL commands directly from GiD-Tcl by using the command
"GiD_OpenGL draw". For example, for C/C++ use:

¥ª_£¥§¬Edi|ifkbpFX=
¥ªs£°²£¶E¶NI·NI¸NFX=
¥ªs£°²£¶E¶OI·OI¸OFX=
¥ªb¬¢EFX

for GiD-Tcl use:

d§a|l®£¬di=¢°~µ=J £¥§¬=ª§¬£±=
d§a|l®£¬di=¢°~µ=J´£°²£¶=xª§±²=A¶N=A·N=A¸Nz=
d§a|l®£¬di=¢°~µ=J´£°²£¶=xª§±²=A¶O=A·O=A¸Oz=
d§a|l®£¬di=¢°~µ=J£¬¢

The standard syntax must be changed according to these rules: - OpenGL constants: "GL"
prefix and underscore character '_' must be removed; the command must be written in
lowercase.

Example:

di|`lilo|j^qbof^i -> ¡­ª­°«~²£°§~ª

- OpenGL functions: "GL" prefix must be removed and the command written in lowercase.
Pass parameters as list, without using parentheses ()

Example:

¥ª_£¥§¬Edi|ifkbpF=-> ¥ª £¥§¬=ª§¬£±

146OpenGL

The subcommand "GiD_OpenGL draw" provides access to standard OpenGL commands,
but other "GiD_OpenGL" special GiD subcommands also exist:

register <tclfunc> Register a Tcl procedure to be invoked automatically when
redrawing the scene. It returns a handle to unregister.

Example:

®°­¡=j·o£¢°~µm°­¡£¢³°£=¹=»=¹=KKK ­¢·KKK=»
±£²=§¢=xd§a|l®£¬di=°£¥§±²£°=j·o£¢°~µm°­¡£¢³°£z

unregister <handle> Unregister a procedure previously registered with register.

Example:

d§a|l®£¬di=³¬°£¥§±²£°=A§¢

registercondition <tclfunc> <cond> Register a Tcl procedure to be invoked
automatically when redrawing the specified condition. It returns a handle to
unregister.
unregistercondition <cond> Unregister a procedure previously registered with
registercondition.

draw <-cmd args -cmd args> This is the most important subcommand, it calls
standard OpenGL commands. See the list of supported OpenGL functions.

drawtext <text> Draw a text more easily than using standard OpenGL commands
(draw in the current 2D location, see rasterpos OpenGL command).

Example:

d§a|l®£¬di=¢°~µ=J°~±²£°®­±=xª§±²=A¶=A·=A¸z=
d§a|l®£¬di=¢°~µ²£¶²=?¦£ªª­=µ­°ª¢?

font push <font_name font_size> | pop | measure <text> | current | metrics
?-ascent|-descent|-linespace|-fixed?

push sets the current OpenGL font, pop restores the previous one

measure <text> returns the amount of space in pixels to display this <text>

current returns a list with the current font name and size

metrics returns a list with current font metrics information: -ascent -descent and
-linespace in pixels, -fixed is 1 if all characters have equal size

Example:

d§a|l®£¬di=¤­¬²=®³±¦=¹?q§«£±=k£µ=o­«~¬?=NU»
±£²=µ§²¦=xd§a|l®£¬di=«£~±³°£=?¦£ªª­=µ­°ª¢?z
d§a|l®£¬di=¢°~µ²£¶²=?¦£ªª­=µ­°ª¢?
d§a|l®£¬di=®­®

drawentity ?-mode normal | filled? point | line | surface | volume | node |

147OpenGL

element | dimension <id list> To draw an internal GiD preprocess entity.

Example:

d§a|l®£¬di=¢°~µ£¬²§²·=J«­¢£=¤§ªª£¢=±³°¤~¡£=?N=R=S?

project <x y z> Given three world coordinates, this returns the corresponding three
window coordinates.

unproject <x y z> Given three window coordinates, this returns the corresponding
three world coordinates.

doscrzoffset <boolean> Special trick to avoid the lines on surfaces hidden by the
surfaces.

List of supported OpenGL functions:

~¡¡³«= ~ª®¦~¤³¬¡= £¥§¬= ª£¬¢¤³¬¡=¡~ªª= ¡~ªªª§±²=¡ª£~°= ¡ª£~°~¡¡³«= ¡ª£~°¡­ª­°=
¡ª£~°¢£®²¦= ¡ª£~°±²£¬¡§ª=¡ª§®®ª~¬£=¡­ª­°=¡­ª­°«~±©= ¡­ª­°«~²£°§~ª= ¡­®·®§¶£ª±=
¡³ªª¤~¡£= ¢£ª£²£ª§±²±= ¢£®²¦¤³¬¡= ¢£®²¦«~±©= ¢¤~¡²­°_ª£¬¢q~ ª£= ¢§±~ ª£=
¢°~µ ³¤¤£°= ¢°~µ®§¶£ª±= £¢¥£¤ª~¥= £¬~ ª£= £¬¢= £¬¢ª§±²= £´~ª¡­­°¢N= £´~ª¡­­°¢O=
£´~ª«£±¦N= £´~ª«£±¦O= ¤§¬§±¦=¤ª³±¦=¤­¥= ¤°­¬²¤~¡£= ¤°³±²³«= ¥£¬ª§±²±= ¥£²±²°§¬¥=
¦§¬²= ¦§¬²j­¢£q~ ª£= §¬§²¬~«£±= ª§¥¦²= ª§¥¦²«­¢£ª= ª§¬£±²§®®ª£= ª§¬£µ§¢²¦=
ª­~¢§¢£¬²§²·=ª­~¢«~²°§¶=ª­~¢¬~«£=ª­­©~²=«~®N=«~®O=«~®¥°§¢N=«~®¥°§¢O=«~²£°§~ª=
«~²°§¶«­¢£= «­¢£`­ª­°j~²q~ ª£= «³ª²«~²°§¶= ¬£µª§±²= ¬£µi§±²q~ ª£= ¬­°«~ª=
­®p²£¬¡§ªq~ ª£= ­®p²£¬¡§ªq~ ª£= ­°²¦­= ®£°±®£¡²§´£= ®§¡©«~²°§¶= ®§¶£ª²°~¬±¤£°=
®§¶£ª¸­­«= ®­§¬²±§¸£= ®­ª·¥­¬«­¢£= ®­®~²²°§ = ®­®«~²°§¶= ®­®¬~«£= ®³±¦~²²°§ =
®³±¦«~²°§¶=®³±¦¬~«£=°~±²£°®­±= °£~¢ ³¤¤£°= °£~¢®§¶£ª±=°£¡²= °£¬¢£°«­¢£=°­²~²£=
±¡~ª£= ±¡§±±­°= ±£ª£¡² ³¤¤£°= ±¦~¢£«­¢£ª= ±²£¬¡§ª¤³¬¡= ±²£¬¡§ª«~±©= ±²£¬¡§ª­®=
²£¶¡­­°¢=²£¶£¬´=²£¶¥£¬= ²£¶§«~¥£N¢= ²£¶§«~¥£O¢= ²£¶®~°~«£²£°=²°~¬±ª~²£=´£°²£¶=
´§£µ®­°²

List of special non OpenGL standard functions:

¥£²±£ª£¡²§­¬

List of supported OpenGL constants:

~¡¡³«= ~¡¡³« ³¤¤£°= ~¡¡³« ³¤¤£° §²= ~¢¢= ~ª®¦~²£±²= ~ªµ~·±= ~ªª~²²°§ =
~ªª~²²°§ §²±=~« §£¬²=~« §£¬²~¬¢¢§¤¤³±£=~³²­¬­°«~ª=~³¶M=~³¶N=~³¶O=~³¶P= ~¡©=
 ~¡©ª£¤²= ~¡©°§¥¦²= ª£¬¢= ª³£ §~±= ª³£±¡~ª£=¡¡µ=¡ª~«®=¡ª§®®ª~¬£M=¡ª§®®ª~¬£N=
¡ª§®®ª~¬£O= ¡ª§®®ª~¬£P= ¡ª§®®ª~¬£Q= ¡ª§®®ª~¬£R= ¡­ª­° ³¤¤£°= ¡­ª­° ³¤¤£° §²=
¡­ª­°§¬¢£¶= ¡­ª­°«~²£°§~ª= ¡­«®§ª£= ¡­«®§ª£~¬¢£¶£¡³²£= ¡­¬±²~¬²~²²£¬³~²§­¬=
¡³ªª¤~¡£= ¡³°°£¬²= ¡³°°£¬² §²= ¡µ= ¢£¡~ª= ¢£¡°= ¢£®²¦ ³¤¤£°= ¢£®²¦ ³¤¤£° §²=
¢£®²¦²£±²=¢§¤¤³±£=¢§²¦£°=¢±²~ª®¦~=¢±²¡­ª­°=£¬~ ª£=£¬~ ª£ §²=£«§±±§­¬=£¯³~ª=
£´~ª=£´~ª §²=£¶®=£¶®O=£¶²£¬±§­¬±=£·£ª§¬£~°=£·£®ª~¬£=¤££¢ ~¡©=¤§ªª=¤ª~²=¤­¥=
¤­¥ §²= ¤­¥¡­ª­°= ¤­¥¢£¬±§²·= ¤­¥£¬¢= ¤­¥«­¢£= ¤­¥±²~°²= ¤°­¬²= ¤°­¬²~¬¢ ~¡©=
¤°­¬²ª£¤²= ¤°­¬²°§¥¦²=¥£¯³~ª=¥°£~²£°=¥°££¬ §~±= ¥°££¬±¡~ª£=¦§¬²=¦§¬² §²=§¬¡°=
§¬´£°²= ©££®= ª£¤²= ª£¯³~ª= ª£±±= ª§¥¦²M= ª§¥¦²N= ª§¥¦²O= ª§¥¦²P= ª§¥¦²Q= ª§¥¦²R=
ª§¥¦²S=ª§¥¦²T=ª§¥¦²§¬¥= ª§¥¦²§¬¥ §²= ª§¥¦²«­¢£ª~« §£¬²= ª§¥¦²«­¢£ªª­¡~ª´§£µ£°=
ª§¥¦²«­¢£ª²µ­±§¢£= ª§¬£= ª§¬£ §²= ª§¬£~°= ª§¬£~°~²²£¬³~²§­¬= ª§¬£ª­­®= ª§¬£±=

148OpenGL

ª§¬£±«­­²¦= ª§¬£±²§®®ª£= ª§¬£±²°§®= ª§±²= ª§±² §²= ª­~¢= «~®N¡­ª­°Q= «~®N¬­°«~ª=
«~®N²£¶²³°£¡­­°¢N= «~®N²£¶²³°£¡­­°¢O= «~®N²£¶²³°£¡­­°¢P= «~®N²£¶²³°£¡­­°¢Q=
«~®N´£°²£¶P= «~®N´£°²£¶Q= «~®O¡­ª­°Q= «~®O¬­°«~ª= «~®O²£¶²³°£¡­­°¢N=
«~®O²£¶²³°£¡­­°¢O= «~®O²£¶²³°£¡­­°¢P= «~®O²£¶²³°£¡­­°¢Q= «~®O´£°²£¶P=
«~®O´£°²£¶Q= «­¢£ª´§£µ= «­¢³ª~²£=«³ª²= ¬£~°£±²=¬£´£°=¬­¬£= ¬­°«~ª§¸£= ¬­²£¯³~ª=
­ ¨£¡²ª§¬£~°= ­ ¨£¡²®ª~¬£= ­¬£= ­¬£«§¬³±¢±²~ª®¦~= ­¬£«§¬³±¢±²¡­ª­°=
­¬£«§¬³±±°¡~ª®¦~= ­¬£«§¬³±±°¡¡­ª­°= ®~¡©~ª§¥¬«£¬²= ®~¡©ª± ¤§°±²= ®~¡©°­µª£¬¥²¦=
®~¡©±©§®®§¶£ª±= ®~¡©±©§®°­µ±= ®~¡©±µ~® ·²£±= ®§¶£ª«­¢£= ®§¶£ª«­¢£ §²= ®­§¬²=
®­§¬² §²= ®­§¬²±= ®­ª·¥­¬= ®­ª·¥­¬ §²= ®­ª·¥­¬­¤¤±£²¤§ªª= ®­ª·¥­¬±²§®®ª£=
®­ª·¥­¬±²§®®ª£ §²=®­±§²§­¬=®°­¨£¡²§­¬=¯=¯³~¢°~²§¡~²²£¬³~²§­¬=¯³~¢±=¯³~¢±²°§®=
°= °£¢ §~±= °£¢±¡~ª£= °£¬¢£°= °£¬¢£°£°= °£®£~²= °£®ª~¡£= °£²³°¬= °§¥¦²=±= ±¡§±±­°=
±¡§±±­° §²= ±£ª£¡²= ±¦§¬§¬£±±= ±«­­²¦= ±®£¡³ª~°= ±®¦£°£«~®= ±®­²¡³²­¤¤=
±®­²¢§°£¡§­¬= ±®­²£¶®­¬£¬²= ±°¡~ª®¦~= ±°¡~ª®¦~±~²³°~²£= ±°¡¡­ª­°= ±²£¬¡§ª²£±²=
±²£¬¡§ª ³¤¤£°= ±²£¬¡§ª ³¤¤£° §²=²= ²£¶²³°£= ²£¶²³°£N¢= ²£¶²³°£O¢= ²£¶²³°£ §²=
²£¶²³°£ ­°¢£°¡­ª­°=²£¶²³°££¬´=²£¶²³°££¬´¡­ª­°=²£¶²³°££¬´«­¢£=²£¶²³°£¥£¬«­¢£=
²£¶²³°£¥£¬±= ²£¶²³°£¥£¬²= ²£¶²³°£«~¥¤§ª²£°= ²£¶²³°£«§¬¤§ª²£°= ²£¶²³°£µ°~®±=
²£¶²³°£µ°~®²= ²°~¬±¤­°«= ²°~¬±¤­°« §²= ²°§~¬¥ª£±= ²°§~¬¥ª£¤~¬= ²°§~¬¥ª£±²°§®=
³¬®~¡©~ª§¥¬«£¬²= ³¬®~¡©ª± ¤§°±²= ³¬®~¡©°­µª£¬¥²¦= ³¬®~¡©±©§®®§¶£ª±=
³¬®~¡©±©§®°­µ±=³¬®~¡©±µ~® ·²£±=´£¬¢­°=´£°±§­¬=´§£µ®­°²=´§£µ®­°² §²=¸£°­

You can find more information about standard OpenGL functions in a guide to OpenGL.

7.4.7 Other

GiD_Set <varname> ?<value>?

This command is used to set or get GiD variables. GiD variables can be found through the
Right buttons menu under the option Utilities -> Variables:

<varname> is the name of the variable;
<value> if this is omitted, the current variable value is returned (analogous with
'GiD_Info variables <varname>').

Example:

d§a|p£²=`°£~²£^ªµ~·±k£µm­§¬²=N

GiD_SetModelName <name>

To change the current model name.

GiD_ModifiedFileFlag set|get ?<value>?

There is a GiD internal flag to indicate that the model has changed, and must be saved
before exit.

With this command it is possible to set or get this flag value:

<value> is only required for set: must be 0 (false), or 1 (true).

Example:

GiD_j­¢§¤§£¢c§ª£cª~¥=±£²=N=

149Other

GiD_j­¢§¤§£¢c§ª£cª~¥=¥£²

GiD_MustRemeshFlag set|get ?<value>?

There is a GiD internal flag to indicate that the geometry, conditions, etc. have changed,
and that the mesh must be re-generated before calculations are performed.

With this command it is possible to set or get this flag value:

<value> is only required for set: must be 0 (false), or 1 (true).

Example:

d§a|j³±²o£«£±¦cª~¥=±£²=N=
d§a|j³±²o£«£±¦cª~¥=¥£²

GiD_BackgroundImage get|set show|filename|location <values>

This command allow to get and set the background image properties

Valid set values are:

show: 1 or 0
filename:

the full filename of some valid GiD image format to be used as background image

or "", to release the current image

location:

'fill' to fill the whole screen,

or six floating values for a real size image, to set the origin and x,y local axes: ox oy ix iy
jx jy

GiD_RegisterExtensionProc <.extension> PRE|POST|PREPOST <procedure>

To register a Tcl procedure to be automatically called when dropping a file with this
extension

e.g.

GiD_RegisterExtensionProc ".h5" PRE Amelet::ReadPre

GiD_RegisterPluginAddedMenuProc <procedure>

To register a Tcl procedure to be automatically called when re-creating all menus (e.g.
when doing files new)

this procedure is responsible to add its own options to default menu.

e.g.

GiD_RegisterPluginAddedMenuProc Amelet::AddToMenu

Some special commands exist to control the redraw and wait state of GiD:

.central.s disable graphics 'value' The value 0/1 Enable/Disable Graphics (GiD does not
redraw)

150Other

EXAMPLE to disable the redraw:

K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¡±=N

.central.s disable graphinput 'value' The value 0/1 Enable/Disable GraphInput (enable
or disable peripherals: mouse, keyboard, ...)

EXAMPLE to disable the peripherals input:

K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¬®³²=N

.central.s disable windows 'value' The value 0/1 Enable/Disable Windows (GiD
displays, or not, windows which require interaction with the user)

EXAMPLE to disable the interaction windows:

K¡£¬²°~ªK±=¢§±~ ª£=µ§¬¢­µ±=N

.central.s disable writebatch 'value' The value 0/1 Enable/Disable writting the batch
file that records the commands send to be processed.

.central.s waitstate 'value' The value 0/1 Enable/Disable the Wait state (GiD displays a
hourglass cursor in wait state)

EXAMPLE to set the state to wait:

K¡£¬²°~ªK±=µ~§²±²~²£=N

Usually these command are used jointly:

EXAMPLE

@¢£~¡²§´~²£=°£¢°~µ±I=£²¡=µ§²=~=µ§¢¥£²=¬~«£¢=Aµ=
Aµ=¡­¬¤=J¡³°±­°=µ~²¡¦=K¡£¬²°~ªK±=µ~§²±²~²£=N=
³®¢~²£=
K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¡±=N=
K¡£¬²°~ªK±=¢§±~ ª£=µ§¬¢­µ±=N=
K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¬®³²=N
KKK
@°£~¡²§´~²£=~ªª=~¬¢=°£¢°~µ=
K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¡±=M=
K¡£¬²°~ªK±=¢§±~ ª£=µ§¬¢­µ±=M=
K¡£¬²°~ªK±=¢§±~ ª£=¥°~®¦§¬®³²=M=
d§a|o£¢°~µ=
Aµ=¡­¬¤=J¡³°±­°=??=
K¡£¬²°~ªK±=µ~§²±²~²£=M

Note: It is recommended for a Tcl developer to use the more 'user-friendly' procedures
defined inside the file 'dev_kit.tcl' (located in the \scripts directory). For example, to

151Other

disable and enable redraws, you can use:

::GidUtils::DisableGraphics

::GidUtils::EnableGraphics

GiD_Thumbnail get [width height]

returns the byte stream of an downscaled view of the graphical window. The image is a
downscaled from the current size to width x height. The parameters widht and
height are optinal and by default the view is scaled to 192x144. The result of this
command can be directly used by the Tk image command, like this:

label .l -image [image create photo -data [GiD_Thumbnail get]]

GiD_GetWorldCoord screen_x screen_y

given the screen coordinates (screen_x, screen_y) returns a list with sis coordinates:

¹=¶=·=¸=¬¶=¬·=¬¸»

being

(x, y, z) the coordinates mapped into the world (model) of the screen coordinates,

(nx, ny, nz) the normal vector components of the world (model) pointing to the user.

the mapping screen --> world (model) is done by intersecting the line perpendicular to
the screen, passing through the coordinates (screen_x, screen_y), with the plane parallel
to the screen (in real, model, world) at the centre of the view / model. The returned
normal is the normal of this plane.

7.5 HTML help support

Problem type developers can take advantage of the internal HTML browser if they wish to
provide online help.

7.5.1 GiDCustomHelp

With GiD version 7.4 and later, problem type developers can take advantage of the new
help format. It is essentially the same html content, but now with an enhanced look and
structure. The GiDCustomHelp procedure below is how you can show help using the new
format:

d§a`³±²­«e£ª®=\~°¥±\

where args is a list of pairs option value. The valid options are:

-title : specifies the title of the help window. By default it is "Help on
<problem_type_name>".
-dir : gives the path for the help content. If -dir is missing it defaults to "<ProblemType
dir>/html". Multilingual content could be present; in such a case it is assumed that there
is a directory for each language provided. If the current language is not found, language

152GiDCustomHelp

'en' (for English) is tried. Finally, if 'en' is not found the value provided for -dir is
assumed as the base directory for the help content.
-start : is a path to an html link (and is relative to the value of -dir). For instance:

J±²~°²=¦²«ªJ´£°±§­¬=
J±²~°²=¦²«ªJ²³²­°§~ª±L²³²­°§~ª|N

-report : is a boolean value indicating if the window format is report. If -report is 1, no
tree is shown and only the content pane is displayed.

7.5.1.1 HelpDirs

With HelpDirs we can specify which of the subdirectories will be internal nodes of the help
tree. Moreover, we can specify labels for the nodes and a link to load when a particular
node is clicked. The link is relative the node. For instance:

e£ª®a§°±=¹¦²«ªJ´£°±§­¬=?d§a=e£ª®?=?§¬²°­L§¬²°­K¦²«ª?»=y=
===============¹¦²«ªJ¡³±²­«§¸~²§­¬=?d§a=`³±²­«§¸~²§­¬?»=y=
===============¹¦²«ªJ¤~¯=?c°£¯³£¬²ª·=^±©£¢=n³£±²§­¬±?»=y=
===============¹¦²«ªJ²³²­°§~ª±=?d§a=q³²­°§~ª±?=?²³²­°§~ª±|²­¡K¦²«ª?»=y=
===============¹¦²«ª|µ¦~²±¬£µ=?t¦~²D±=k£µ?»

7.5.1.2 Structure of the help content

Assuming that html has been chosen as the base directory for the multilingual help
content, the following structure is possible:

¦²«ª=
====y||=£¬=J=b¬¥ª§±¦=¡­¬²£¬²
====y||=£±=J=p®~¬§±¦=¡­¬²£¬²

Each content will probably have a directory structure to organize the information. By
default the help system builds a tree resembling the directory structure of the help
content. In this way there will be an internal node for each subdirectory, and the html
documents will be the terminal nodes of the tree.

You can also provide a help.conf configuration file in order to provide more information
about the structure of the help. In a help file you can specify a table of contents
(TocPage), help subdirectories (HelpDirs) and an index of topics (IndexPage).

7.5.1.3 TocPage

TocPage defines an html page as a table of contents for the current node (current
directory). We have considered two ways of specifying a table of contents:

Yri[=Yif[=KKK=YLri[=(default)
Yaq[=Yai[=KKK=YLaq[

153TocPage

The first is the one generated by texinfo.

For instance:

q­¡m~¥£=¥§¢|²­¡K¦²«ª
q­¡m~¥£=¡­¬²£¬²±K¦²=aq

7.5.1.4 IndexPage

If we specify a topic index by IndexPage, we can take advantage of the search index. In
IndexPage we can provide a set of html index pages along with the structure type of the
index. The type of the index could be:

Yafo[=Yif[=KKK=YLafo[(default)
Yri[=Yif[=KKK=YLri[(only one level of)

The first is the one generated by texinfo.

For instance:

f¬¢£¶m~¥£=¦²«ªJ´£°±§­¬L¥§¢|NUK¦²«ª=¦²«ªJ¤~¯L¤~¯|NNK¦²«ª

7.5.2 HelpWindow

7.5.2.1 Create a directory named html inside your Problem Type directory
7.5.2.2 Call HelpWindow "CUSTOM_HELP" "problem_type_name" , where

problem_type_name is the name of your problem type with the .gid extension
(e.g. Examples/cmas2d.gid).

7.5.2.3 The function HelpWindow opens the file "index.html" which must be inside the
html folder.

It is a good idea to call the function HelpWindow "CUSTOM_HELP"
"problem_type_name" using the menu functions (see Managing menus -pag. 154-).

EXAMPLE: Adding a customized HTML help in the Help menu for the CMAS2D

154HelpWindow

problem type:

d§aj£¬³WWf¬±£°²l®²§­¬= ?e£ª®?= xª§±²= ?e£ª®= `j^pOa?z=M= mobmlpq= ¹e£ª®t§¬¢­µ=
?`rpqlj|ebim?=?b¶~«®ª£±L¡«~±O¢K¥§¢?»=??=??=§¬±£°²=|
d§aj£¬³WWr®¢~²£j£¬³±

Note: In order to test this example, must provide the html file:

'problemtypes/Examples/cmas2d.gid/html/index.html'

7.6 Managing menus

GiD offers you the opportunity to customize the pull-down menus. You can add new
menus or to change the existing ones. If you are creating a problem type, these functions
should be called from the InitGIDProject or InitGIDPostProcess functions (see TCL AND TK
EXTENSION -pag. 111-).

Note: Menus and option menus are identified by their names.

Note: It is not necessary to restore the menus when leaving the problem type, GiD does
this automatically.

The Tcl functions are:

GiDMenu::Create { menu_name_untranslated prepost {pos -1}
{translationfunc _} }

Creates a new menu. New menus are inserted between the Calculate and Help menus.

menu_name_untranslated: text of the new menu (English).
prepost can have these values:

"PRE" to create the menu only in GiD Preprocess.

"POST" to create the menu only in GiD Postprocess.

"PREPOST" to create the menu in both Pre- and Postprocess.

pos: optional, index where the new menu will be inserted (by default it is inserted
before the 'Help' menu)
translationfunc: optional, must be _ for GiD strings (default), or = for problemtype
strings

GiDMenu::Delete { menu_name_untranslated prepost {translationfunc _} }

Deletes a menu.

menu_name_untranslated: text of the menu to be deleted (English).
prepost can have these values:

155Managing menus

"PRE" to delete the menu only in GiD Preprocess.

"POST" to delete the menu only in GiD Postprocess.

"PREPOST" to delete the menu in both Pre- and Postprocess.

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype
strings

GiDMenu::InsertOption { menu_name_untranslated option_name_untranslated
position prepost command {acceler ""} {icon ""} {ins_repl "replace"}
{translationfunc _} }

Creates a new option for a given menu in a given position (positions start at 0, the word
'end' can be used for the last one).

 menu_name_untranslated: text of the menu into which you wish to insert the new
option (English), e.g "Utilities"
option_name_untranslated: name of the new option (English) you want to insert.

The option name, is a menu sublevels sublevels list, like [list "List" "Points"]

If you wish to insert a separator line in the menu, put "---" as the option_name.

position: position in the menu where the option is to be inserted. Note that positions
start at 0, and separator lines also count.
prepost: this argument can have the following values:

"PRE" to insert the option into GiD Preprocess menus.

"POST" to insert the option into GiD Postprocess menus.

"PREPOST" to insert the option into both Pre- and Postprocess menus.

command: is the command called when the menu option is selected.
acceler: optional, key accelerator, like "Control-s"
icon: optional, name of a 16x16 pixels icon to show in the menu
ins_repl: optional, if the argument is:
replace: (default) the new option replaces the option in the given position
insert: the new option is inserted before the given position.
insertafter: the new option is inserted after the given position.

translationfunc: optional, must be _ for GiD strings (default), or = for problemtype
strings

GiDMenu::RemoveOption {menu_name_untranslated
option_name_untranslated prepost {translationfunc _}}

Removes an option from a given menu.

 menu_name_untranslated: name of the menu (English) which contains the option
you want to remove. e.g "Utilities"
option_name_untranslated: name of the option (English) you want to remove. The
option name, is a menu sublevels list, like [list "List" "Points"]
 prepost: this argument can have the following values:

"PRE" to insert the option into GiD Preprocess menus.

156Managing menus

"POST" to insert the option into GiD Postprocess menus.

"PREPOST" to insert the option into both Pre- and Postprocess menus.

 translationfunc: optional, must be _ for GiD strings (default), or = for problemtype
strings

 To remove separators, the option_name is --- , but you can append an index (starting
from 0) to specify wich separator must be removed, if there are more than one.

e.g.

d§aj£¬³WWo£«­´£l®²§­¬=?d£­«£²°·?=xª§±²=?`°£~²£?=?JJJO?z=mob

GiDMenu::ModifyOption { menu_name_untranslated
option_name_untranslated prepost new_option_name {new_command
-default-} {new_acceler -default-} {new_icon -default-} {translationfunc _} }

Edit an existent option from a given menu

some parameters can be '-default-' to keep the current value for the command,
accelerator, etc

GiDMenu::UpdateMenus {}

Updates changes made on menus. This function must be called when all calls to create,
delete or modify menus are made.

GiD_RegisterPluginAddedMenuProc and GiD_UnRegisterPluginAddedMenuProc

This commands can be used to specify a callback procedure name to be called to do some
change to the original menus

GiD_RegisterPluginAddedMenuProc <procname>

 GiD_UnRegisterPluginAddedMenuProc<procname>

 The procedure prototype to be registered must not expect any parameter, something
like this.

 proc <procname> { } {

 ... do something ...

 }

e.g. a plugin can modify a menu to add some entry, but this entry will be lost when GiD
create again all menus, for example when starting a new model. Registering the procedure
will be applied again when recreating menus.

GiD_RegisterExtensionProc and GiD_UnRegisterExtensionProc

This tcl command must be used to register a procedure that is able to handle when using
'drag and drop' of a file on the GiD window.

It is possible to specify the extension (or a list of extensions) of the files to be handled, the
mode PRE or POST where it will be handled, and the name of the callback procedure to be
called.

157Managing menus

GiD_RegisterExtensionProc <list of extensions> <prepost> <procname>

GiD_UnRegisterExtensionProc <list of extensions> <prepost>

 <extension> is the file extension, preceded by a dot

<prepost> could be PRE or POST

 The procedure prototype to be registered must expect a single parameter, the dropped
file name, something like this.

 proc <procname> { filename } {

 ... do something ...

 }

 Example:

 GiD_RegisterExtensionProc ".gif .png" PRE MyImageProcedure

EXAMPLE: creating and modifying menus

In this example we create a new menu called "New Menu" and we modify the GiD
Help menu:

The code to make these changes would be:

d§aj£¬³WW`°£~²£=?k£µ=j£¬³?=?mob?=JN=Z
d§aj£¬³WWf¬±£°²l®²§­¬=?k£µ=j£¬³?=xª§±²=?l®²§­¬=N?z=M=mob= ?`­««~¬¢|N?=??=??=
°£®ª~¡£=Z
d§aj£¬³WWf¬±£°²l®²§­¬=?k£µ=j£¬³?=xª§±²=?l®²§­¬=O?z=N=mob= ?`­««~¬¢|O?=??=??=
°£®ª~¡£=Z
d§aj£¬³WWf¬±£°²l®²§­¬=?k£µ=j£¬³?=xª§±²=?JJJ?z=O=mob=??=??=??=°£®ª~¡£=Z
d§aj£¬³WWf¬±£°²l®²§­¬=?k£µ=j£¬³?=xª§±²=?l®²§­¬=P?z=P=mob= ?`­««~¬¢|P?=??=??=
°£®ª~¡£=Z

d§aj£¬³WWf¬±£°²l®²§­¬=?e£ª®?=xª§±²=?j·=e£ª®?z=N=mob=??=??=??=§¬±£°²=|
d§aj£¬³WWf¬±£°²l®²§­¬= ?e£ª®?= xª§±²= ?j·= e£ª®?= ?j·= ¦£ª®= N?z= M= mob=
?`­««~¬¢|¦£ª®N?=??=??=°£®ª~¡£=|
d§aj£¬³WWf¬±£°²l®²§­¬= ?e£ª®?= xª§±²= ?j·= e£ª®?= ?j·= ¦£ª®= O?z= N= mob=
?`­««~¬¢|¦£ª®O?=??=??=°£®ª~¡£=|

d§aj£¬³WWo£«­´£l®²§­¬=?e£ª®?=xª§±²=?`³±²­«§¸~²§­¬=e£ª®?z=mob=|

158Managing menus

d§aj£¬³WWo£«­´£l®²§­¬=?e£ª®?=xª§±²=?t¦~²=§±=¬£µ?z=mob=|
d§aj£¬³WWo£«­´£l®²§­¬=?e£ª®?=xª§±²=?c^n?z=mob=|

d§aj£¬³WWr®¢~²£j£¬³±

7.7 Custom Data Windows

In this section the Tcl/Tk (scripted) customization of the look and feel of the data
windows is shown. The layout of the properties drawn in the interior of any of the data
windows - either Conditions, Materials, Interval Data or Problem Data - can be customized
by a feature called TkWidget; moreover, the common behaviour of two specific data
windows, Conditions and Materials, can be modified by a Tcl procedure provided for that
purpose. This common behaviour includes, in the case of Materials for example,
assigning/unassigning, drawing, geometry types, where to assign materials,
creating/deleting materials, etc.

7.7.1 TkWidget

The problem type developer can change the way a QUESTION is displayed and if he
wishes he can also change the whole contents of a window, while maintaining the basic
behavior of the data set, i.e. in the Condition window: assign, unassign, draw; in the
Material window: create material, delete material; and so on.

With the default layout for the data windows, the questions are placed one after another in
one column inside a container frame, the QUESTION 's label in column zero and the
VALUE in column one. For an example see picture below.

`lkafqflkW=p²££ª|±£¡²§­¬
`lkaqvmbW=­´£°=ª§¬£±
`lkajbpeqvmbW=­´£°= ­¢·=£ª£«£¬²±
nrbpqflkW=i­¡~ª|^¶£±@i^@EJa£¤~³ª²JIJ^³²­«~²§¡JF
s^irbW=Ja£¤~³ª²J
nrbpqflkW=p²££ªk~«£
s^irbW=fmkJUM
nrbpqflkW=p²££ªq·®£
s^irbW=^PT
bka=`lkafqflk=

159TkWidget

The developer can override this behavior using TKWIDGET. TKWIDGET is defined as an
attribute of a QUESTION and the value associated with it must be the name of a Tcl
procedure, normally implemented in a Tcl file for the problem type. This procedure will
take care of drawing the QUESTION. A TKWIDGET may also draw the entire contents of
the window and deal with some events related to the window and its data.

The prototype of a TKWIDGET procedure is as follow:

®°­¡=qht§¢¥£²m°­¡=¹£´£¬²=~°¥±»=¹
==±µ§²¡¦=A£´£¬²=¹
====fkfq=¹
=======KKK
====»
====pvk`=¹
=======KKK
====»
====abmbka=¹
=======KKK
====»
====`ilpb=¹
=======KKK
====»
==»
»

The procedure should return:

an empty string "" meaning that every thing was OK;
a two-list element {ERROR-TYPE Description} where ERROR-TYPE could be ERROR or
WARNING. ERROR means that something is wrong and the action should be aborted. If
ERROR-TYPE is the WARNING then the action is not aborted but Description is shown as

160TkWidget

a message. In any case, if Description is not empty a message is displayed.

The argument event is the type of event and args is the list of arguments depending on
the event type. The possible events are: INIT, SYNC, CLOSE and DEPEND. Below is a
description of each event.

INIT: this event is triggered when GiD needs to display the corresponding
QUESTION and the list of arguments is {frame row-var GDN STRUCT QUESTION}:
frame is the container frame where the widget should be placed; row-var is the name of
the variable, used by GiD, with the current row in the frame; GDN and STRUCT are the
names of internal variables needed to access the values of the data; QUESTION is the
QUESTION's name for which the TKWIDGET procedure was invoked. Normally the code
for this event should initialize some variables and draw the widget.
SYNC: this is triggered when GiD requires a synchronization of the data. Normally it
involves updating some of the QUESTIONs of the data set. The argument list is {GDN
STRUCT QUESTION}.
CLOSE: this is triggered before closing the window, as mentioned this can be canceled if
an ERROR is returned from the procedure.
DEPEND: this event is triggered when a dependence is executed over the QUESTION for
which the TKWIDGET is defined, ie. that QUESTION is an lvalue of the dependence.
The list of arguments is {GDN STRUCT QUESTION ACTION value} where GDN,
STRUCT and QUESTION are as before, ACTION could be SET, HIDE or RESTORE and
value is the value assigned in the dependence.

The picture below shows a fragment of the data definition file and the GUI obtained. This
sample is taken from the problem type RamSeries/rambshell and in this case the
TKWIDGET is used to create the whole contents of the condition windows. For a full
implementation, please download the problem type and check it.

`lkafqflkW=p²££ª|±£¡²§­¬
`lkaqvmbW=­´£°=ª§¬£±
`lkajbpeqvmbW=­´£°= ­¢·=£ª£«£¬²±
nrbpqflkW=i­¡~ª|^¶£±@i^@EJa£¤~³ª²JIJ^³²­«~²§¡JF
s^irbW=Ja£¤~³ª²J
nrbpqflkW=p²££ªk~«£
s^irbW=J
nrbpqflkW=p²££ªq·®£
s^irbW=J
qhtfadbqW=p²££ªp£¡²§­¬±
bka=`lkafqflk=

161TkWidget

7.7.2 Data Windows Behavior

In this subsection we explain a Tcl procedure used to configure the common behaviour of
Materials. We are working on providing a similar functionality for Conditions using the
same interface.

GiD_DataBehaviour controls properties of data windows for Materials and Conditions
(not currently implemented). For Materials we can modify the behaviour of assign, draw,
unassign, impexp (import/export), new, modify and delete. We can also specify the entity
type list with the assign option throught the subcommands geomlist and meshlist.

The syntax of the procedure is as follows:

d§a|a~²~_£¦~´§­³°=¢~²~|¡ª~±±=¬~«£=\¡«¢\=®°­®ª§±²

where

data_class could be "material" if we want to modify the behaviour of a particular
material, or "materials" if a whole book is to be modified;
name takes the value of a material's name or a book's name, depending on the value of
data_class;
cmd can take one of the values: show, hide, disable, geomlist and meshlist;
proplist is a list of options or entity types. When the value of cmd is show, hide or
disable, then proplist can be a subset of {assign draw unassign impexp new modify
delete}. If the value of cmd is show it makes the option visible, if the value is hide then
the option is not visible, and when the value is disable then the option is visible but
unavailable. When the value of cmd is geomlist then proplist can take a subset of

162Data Windows Behavior

{points lines surfaces volumes} defining the entities that can have the material assigned
when in geometry mode; if the value of cmd is meshlist then proplist can take the value
elements. Bear in mind that only elements can have a material assigned in mesh mode.
If cmd is not provided, the corresponding state for each of the items provided in proplist
is obtained as a result.

Example:

d§a|a~²~_£¦~´§­³°=«~²£°§~ª±=q~ ª£=¥£­«ª§±²=¹±³°¤~¡£±=´­ª³«£±»=
d§a|a~²~_£¦~´§­³°=«~²£°§~ª±=p­ª§¢=¦§¢£=¹¢£ª£²£=§«®£¶®»

GiD_ShowBook=§±=~=®°­¡£¢³°£=²­=¦§¢£L±¦­µ=~= ­­©=¤°­«=²¦£=«£¬³±

d§a|p¦­µ_­­©Þ¡ª~±±= ­­©=±¦­µ

where

class must be: gendata materials conditions or intvdata
book is the name of the book to be show or hidden
show must be 0 or 1

After change the book properties is necessary to call to GiDMenu::UpdateMenus

Example:

d§a|p¦­µ_­­©=«~²£°§~ª±=²~ ª£±=M
d§aj£¬³WWr®¢~²£j£¬³±=

7.8 GiD version

Normally, a problem type requires a minimum version of GiD to run. Because the problem
type can be distributed or sold separately from GiD, it is important to check the GiD
version before continuing with the execution of the problem type. GiD offers a function,
GidUtils::VersionCmp, which compares the version of the GiD currently being run with a
given version.

GidUtils::VersionCmp { Version }

This returns a negative integer if Version is greater than the currently executed GiD
version; zero if the two versions are identical; and a positive integer if Version is less than
the GiD version.

Note: This function will always return the value -1 if the GiD version is previous to 6.1.5.

Example:

®°­¡=f¬§²dfam°­¨£¡²=¹=¢§°=»=¹
====±£²=s£°±§­¬o£¯³§°£¢=?NMKM?
====§¤=¹xd§¢r²§ª±WWs£°±§­¬`«®=As£°±§­¬o£¯³§°£¢z=Y=M=»=¹
========t~°¬t§¬= xZ= ?q¦§±= §¬²£°¤~¡£= °£¯³§°£±= d§a= B±= ­°= ª~²£°?=
As£°±§­¬o£¯³§°£¢z

163GiD version

====»
»

7.9 Detailed example

Here is a step by step example of how to create a Tcl/Tk extension. In this example we will
create the file cmas2d.tcl, so we will be extending the capabilities of the cmas2d problem
type. The file cmas2d.tcl has to be placed inside the cdmas2d Problem Type directory.

Note: The cmas2d problem type calculates the center of mass of a 2D surface. This
problem type is located inside the Problem Types directory, in the GiD directory.

In this example, the cmas2d.tcl creates a window which appears when the problem type is
selected.

Window created in the cmas2d.tcl example file

This window gives information about the location, materials and conditions of the problem
type. The window has two buttons: CONTINUE lets you continue working with the
cmas2d problem type; RANDOM SURFACE creates a random 2D surface in the plane XY.

What follows is the Tcl code for the example. There are three main procedures in the
cmas2d.tcl file:

proc InitGIDProject {dir}

proc InitGIDProject {dir } {

 set materials [GiD_Info materials]

 set conditions [GiD_Info conditions ovpnt]

 CreateWindow $dir $materials $conditions

}

This is the main procedure. It is executed when the problem type is selected. It calls the
CreateWindow procedure.

proc CreateWindow {dir mat cond}

®°­¡=`°£~²£t§¬¢­µ=¹¢§°=«~²=¡­¬¢»=¹=
====§¤=¹=xd§¢r²§ª±WW^°£t§¬¢­µ±a§±~ ª£¢z=»=¹

164Detailed example

========°£²³°¬
====»=
====±£²=µ=K¥§¢Kµ§¬|£¶~«®ª£
====f¬§²t§¬¢­µ=Aµ=xZ=?`j^pOaKq`i=J=b¶~«®ª£=²¡ª=¤§ª£?z=b¶~«®ª£`j^p=??=??=N
====§¤=¹=>xµ§¬¤­=£¶§±²±=Aµz=»=°£²³°¬=X@=µ§¬¢­µ±=¢§±~ ª£¢=ºº= ³±£«­°£µ§¬¢­µ±=
ZZ=M
====²²©WW¤°~«£=AµK²­®
====²²©WWª~ £ª= AµK²­®K²§²ª£|²£¶²= J²£¶²=xZ= ?q`i= µ§¬¢­µ= £¶~«®ª£=¤­°= `j^pOa=
®°­ ª£«=²·®£?z=
====²²©WW¤°~«£=AµK§¬¤­°«~²§­¬=J°£ª§£¤=°§¢¥£
====²²©WWª~ £ª=AµK§¬¤­°«~²§­¬K®~²¦=J²£¶²=xZ=?m°­ ª£«=q·®£=®~²¦W=B±?=A¢§°z
====²²©WWª~ £ª= AµK§¬¤­°«~²§­¬K«~²£°§~ª±=J²£¶²=xZ= ?^´~§ª~ ª£= «~²£°§~ª±W=B±?=
A«~²z
====²²©WWª~ £ª=AµK§¬¤­°«~²§­¬K¡­¬¢§²§­¬±=J²£¶²=xZ=?^´~§ª~ ª£=¡­¬¢§²§­¬±W=B±?=
A¡­¬¢z=
====²²©WW¤°~«£=AµK ­²²­«
====²²©WW ³²²­¬=AµK ­²²­«K±²~°²=J²£¶²=xZ=?`­¬²§¬³£?z=J¡­««~¬¢=?¢£±²°­·=Aµ?
====²²©WW ³²²­¬= AµK ­²²­«K°~¬¢­«= J²£¶²= xZ= ?o~¬¢­«= ±³°¤~¡£?z= J¡­««~¬¢=
?`°£~²£o~¬¢­«p³°¤~¡£=Aµ?
====¥°§¢=AµK²­®K²§²ª£|²£¶²=J±²§¡©·=£µ
====¥°§¢=AµK²­®=J±²§¡©·=¬£µ
====¥°§¢=AµK§¬¤­°«~²§­¬K®~²¦=J±²§¡©·=µ=J®~¢¶=S=J®~¢·=S
====¥°§¢=AµK§¬¤­°«~²§­¬K«~²£°§~ª±=J±²§¡©·=µ=J®~¢¶=S=J®~¢·=S
====¥°§¢=AµK§¬¤­°«~²§­¬K¡­¬¢§²§­¬±=J±²§¡©·=µ=J®~¢¶=S=J®~¢·=S
====¥°§¢=AµK§¬¤­°«~²§­¬=J±²§¡©·=¬±£µ=
====¥°§¢=AµK ­²²­«K±²~°²=AµK ­²²­«K°~¬¢­«=J®~¢¶=S
====¥°§¢=AµK ­²²­«=J±²§¡©·=±£µ=J®~¢¶=S=J®~¢·=S
====§¤=¹=AWW²¡ª|´£°±§­¬=[Z=UKR=»=¹=¥°§¢=~¬¡¦­°=AµK ­²²­«=¡£¬²£°=»
====¥°§¢=°­µ¡­¬¤§¥³°£=Aµ=N=Jµ£§¥¦²=N
====¥°§¢=¡­ª³«¬¡­¬¤§¥³°£=Aµ=M=Jµ£§¥¦²=N=
»

This procedure creates the window with information about the path, the materials and the
conditions of the project. The window has two buttons: if CONTINUE is pressed the
window is dismissed; if RANDOM SURFACE is pressed, it calls the
CreateRandomSurface procedure.

proc CreateRandomSurface {w}

165Detailed example

®°­¡=`°£~²£o~¬¢­«p³°¤~¡£=¹µ»=¹
=±£²=°£²=x²©|¢§~ª­¥o^j=AµK¢§~ª­¥=xZ=?t~°¬§¬¥?z=y
====xZ=?t~°¬§¬¥W=²¦§±=µ§ªª=¡°£~²£=~=¬³° ±=±³°¤~¡£=§¬=·­³°=¡³°°£¬²=®°­¨£¡²?z=
??=N=xZ=?l©?z=xZ=?`~¬¡£ª?zz
=§¤=¹A°£²=ZZM»=¹
=======`°£~²£|±³°¤~¡£
=======¢£±²°­·=Aµ
==»
»

This procedure is called when the RANDOM SURFACE button is pressed. Before creating
the surface, a dialog box asks you to continue with or cancel the creation of the surface. If
the surface is to be created, the Create_surface procedure is called. Then, the window is
destroyed.

®°­¡=`°£~²£|±³°¤~¡£=¹»=¹
====±£²=~|¶=x£¶®°=°~¬¢EFGNMz
====±£²=~|·=x£¶®°=°~¬¢EFGNMz=
====±£²= |¶=x£¶®°=A~|¶=H=°~¬¢EFGNMz
====±£²= |·=x£¶®°=A~|·=H=°~¬¢EFGNMz=
====±£²=¡|¶=x£¶®°=A |¶=H=°~¬¢EFGNMz
====±£²=¡|·=x£¶®°=A |·=J=°~¬¢EFGNMz=
====§¤=¹A~|·=Y=A¡|·»=¹
========±£²=¢|·=x£¶®°=A~|·=J=°~¬¢EFGNMz
========±£²=¢|¶=x£¶®°=A~|¶=H=°~¬¢EFGNMz
====»=£ª±£=¹
========±£²=¢|·=x£¶®°=A¡|·=J=°~¬¢EFGNMz=
========±£²=¢|¶=x£¶®°=A¡|¶=J=°~¬¢EFGNMz
====»=
====d§a|m°­¡£±±=£±¡~®£=£±¡~®£=£±¡~®£=¥£­«£²°·=¡°£~²£=ª§¬£=y
========A~|¶IA~|·IMKMMMMMM= A |¶IA |·IMKMMMMMM= A¡|¶IA¡|·IMKMMMMMM=
A¢|¶IA¢|·IMKMMMMMM=¡ª­±£=
====d§a|m°­¡£±±= £±¡~®£= £±¡~®£= £±¡~®£= £±¡~®£= ¥£­«£²°·= ¡°£~²£= k³° ±p³°¤~¡£=
^³²­«~²§¡=y
========Q=£±¡~®£=
====d§a|m°­¡£±±=Dw­­«=c°~«£=£±¡~®£=£±¡~®£=£±¡~®£=£±¡~®£=
»

166Detailed example

A 2D surface (a four-sided 2D polygon) is created. The points of this surface are chosen at
random.

8 PLUG-IN EXTENSIONS

167

This section explains a new way to expand GiD capabilities: the plug-in mechanism.

Plug-ins which should be used by GiD shoud be present inside the
$GID/plugins directory.

There are two possible plugin mechanisms:

Tcl plug-in

8.1 Tcl plug-in

If a file with extension .tcl is located inside the GiD 'plugins' folder, with the same name as
the folder containing it, then it is automatically sourced when starting GiD.

This allow to do what the developer want, with Tcl language, e.g. change menus, source
other Tcl files or load a 'Tcl loadable library' that extend the Tcl language with new
commands implemented at C level.

To know how to create a 'Tcl loadable library' some Tcl book must be read.

See chapter about 'C Programming for Tcl' of

"Practical Programming in Tcl and Tk" by Brent Welch, Ken Jones, and Jeff Hobbs at
http://www.beedub.com/book

8.2 GiD dynamic library plug-in

Note that 'GiD dynamic libraries' are different of 'Tcl loadable libraries'

'GiD dynamic libraries' must do specifically the task that GiD expects: now it is only
available an interface for libraries that import mesh and create results for GiD postprocess.
In the future new interfaces to do other things could appear, and to be usable must follow
the rules explained in this chapter.

8.2.1 Introduction

As the variety of existent formats worldwide is too big to be implemented in GiD and,
currently, the number of supported formats for mesh and results information in GiD is
limited, the GiD team has implemented a new mechanism which enables third party
libraries to transfer mesh and results to GiD, so that GiD can be used to visualize
simulation data written in whatever format this simulation program is using.

This new mechanism is the well know mechanism of plug-ins. Particularly GiD supports the
loading of dynamic libraries to read any simulation data and transfer the mesh and results
information to GiD.

Viewing GiD as a platform of products, this feature allows a further level of integration of
the simulation code in GiD by means of transferring the results of the simulation to GiD in
any format specified by this simulation code thus avoiding the use of a foreign format.

A manual loading mechanism was already available since GiD version 9.3.0-beta but since

168Introduction

GiD version 10.1.1e the recognized plug-ins are automatically loaded in GiD and appear in
the top menu bar in the Files Import Plugins submenu.

Since GiD version 10.1.2d this mechanism not only works in Microsoft Windows and Linux,
but also in Apple's Mac OS X.

8.2.2 In GiD

Since GiD 10.1.1e, the recognized import plug-ins appear in the top menu bar under the
menu 'Files Import Plugins':

Import plug-ins menu showing the import plug-in examples included in GiD

But already since GiD version 9.3.0-beta these dynamic libraries can be manually loaded
and called via TCL scripts, in GiD post-process's command line, or using the post-process's
right menu 'Files ImportDynamicLib' and the options LoadDynamicLib, UnloadDynamicLib,
CallDynamicLib:

For one plug-in library, named MyImportPlugin.dll (or MyImportPlugin.so in Linux or
MyImportPlugin.dylib in mac OS X) to be automatically recognized by GiD and to be
loaded and listed in the top's menu Files Import Plugins, the library should lie inside a
directory of the same name, i.e. MyImportPlugin/MyImportPlugin.dll, under any sub-folder
of the %GID%/plugins/Import directory:

Note that only the GiD 32 bits version can handle 32 bits import plug-in dynamic libraries,
and only GiD 64 bits can handle 64 bits import plug-in dynamic libraries. Which version of
GiD is currently running can be easily recognized in the title bar of the main window (Title
bar of GiD's window showing 'GiD x64', so the current GiD is the 64 bits version)

Together with the GiD installation, following import plug-ins are provided:

OBJ: Wavefront Object format from Wavefront Technologies

169In GiD

OFF: Object file format vector graphics file from Geomview
PLY: Polygon file format, aka Stanford Triangle Format, from the Stanford graphics lab.
PLY-tcl: this plug-in is the same as the above PLY one but with a tcl's progress bar
showing the tasks done in the library while a ply file is imported. For all of these plug-in
examples both the source code, the Microsoft Visual Studio projects, Makefiles for Linux
and Mac OS X, and some little models are provided

The 'tref.off' Object File Format
example

The 'bunny_standford.ply' Polygon File
Format example

8.2.3 Developing the plug-in

GiD is compiled with the Tcl/Tk libraries version 8.5.11.

Remember that if the developed plugin is targeted for 32 bits, only GiD 32 bits can handle
it. If the developed plugin is developed for 64 bits systems, then GiD 64 bits is the proper
one to load the plugin.

Header inclusion

In the plug-in code, in one of the .cc/.cpp/.cxx source files of the plug-in, following
definition must be made and following file should be included:

@¢£¤§¬£=_rfia|dfa|mirdfk
@§¬¡ª³¢£=?¥§¢|®ª³¥§¬|§«®­°²K¦?

In the other .cc/.cpp/.cxx files which also use the provided functions and types, only the
gid_plugin_import.h file should be included, without the macro definition.

The macro is needed to declare the provided functions as pointers so that GiD can find
them and link with its internal functions.

Functions to be defined by the plug-in

Following functions should be defined and implemented by the plug-in:

£¶²£°¬=?`?=dfa|aii|bumloq=§¬²=d§a|m­±²f«®­°²c§ª£E=¡­¬±²=¡¦~°=G¤§ª£¬~«£F=F=¹
========KKK=X
========°£²³°¬=MX=LL=N=J=­¬=£°°­°
»

170Developing the plug-in

£¶²£°¬=?`?=dfa|aii|bumloq=¡­¬±²=¡¦~°=Gd§a|m­±²f«®­°²d£²i§ k~«£E=´­§¢F=¹
========°£²³°¬=?t~´£¤°­¬²=l ¨£¡²±=§«®­°²?X
»
£¶²£°¬=?`?=dfa|aii|bumloq=¡­¬±²=¡¦~°=Gd§a|m­±²f«®­°²d£²c§ª£b¶²£¬±§­¬±E=´­§¢F=
¹
========°£²³°¬=?¹¹t~´£¤°­¬²=l ¨£¡²±»=¹K­ ¨»»=¹¹^ªª=¤§ª£±»=¹G»»?X
»
£¶²£°¬=?`?=dfa|aii|bumloq=¡­¬±²=¡¦~°=Gd§a|m­±²f«®­°²d£²a£±¡°§®²§­¬E=´­§¢F=¹
========°£²³°¬=?t~´£¤°­¬²=l_g=§«®­°²=®ª³¥§¬=¤­°=d§a?X
»
£¶²£°¬=?`?=dfa|aii|bumloq=¡­¬±²=¡¦~°=Gd§a|m­±²f«®­°²d£²b°°­°p²°E=´­§¢F=¹
========°£²³°¬=|d|£°°|±²°X=LL=§¤=£°°­°I=°£²³°¬±=²¦£=£°°­°=±²°§¬¥
»

When GiD is told to load the dynamic library, it will look for, and will call these functions:

GiD_PostImportGetLibName : returns the name of the library and should be unique.
This name will appear in the 'File Import Plugin' menu and in the right menu.

GiD_PostImportGetFileExtensions : which should return a list of extensions handled by
the library and will be used as filter in the Open File dialogue window.

GiD_PostImportGetDescription: : returns the description of the library and will be
displayed in the title bar of the Open File dialogue window.

Once the library is registered, when the user selects the menu entry 'File Import
Plugin NewPlugin' the Open File dialogue window will appear showing the registered
filters and description of the plug-in.

The file selection window showing the plug-in description as title of
the window and filtering the file list with the registered extension

When the user selects a file then following functions are called:

GiD_PostImportFile : this function should read the file, transfer the mesh and results
information to GiD and return 0 if no problems appeared while the file was read or 1 in
case of error.

171Developing the plug-in

GiD_PostImportGetErrorStr : this function will be called if the previous one returns 1,
to retrieve the error string and show the message to the user.

8.2.4 Functions provided by GiD

Inside the GiD_PostImportFile function, following functionñ

	1 Table of Contents
	1 FEATURES
	2 INTRODUCTION
	3 CONFIGURATION FILES
	3.1 XML file
	3.1.1 ValidatePassword node

	3.2 Conditions file (.cnd)
	3.2.1 Example: Creating the conditions file

	3.3 Problem and intervals data file (.prb)
	3.3.1 Example: Creating the PRB data file

	3.4 Materials file (.mat)
	3.4.1 Example: Creating the materials file

	3.5 Special fields
	3.6 Unit System file (.uni)
	3.7 Conditions symbols file (.sim)
	3.7.1 Example: Creating the Symbols file

	4 TEMPLATE FILES
	4.1 Commands used in the .bas file
	4.1.1 Single value return commands
	4.1.2 Multiple values return commands
	4.1.3 Specific commands

	4.2 General description
	4.3 Detailed example - Template file creation
	4.3.1 Formatted nodes and coordinates listing
	4.3.2 Elements, materials and connectivities listing
	4.3.3 Nodes listing declaration
	4.3.4 Elements listing declaration
	4.3.5 Materials listing declaration
	4.3.6 Nodes and its conditions listing declaration

	5 EXECUTING AN EXTERNAL PROGRAM
	5.1 Showing feedback when running the solver
	5.2 Commands accepted by the GiD command.exe
	5.3 Managing errors
	5.4 Examples

	6 POSTPROCESS DATA FILES
	6.1 Postprocess results format: ProjectName.post.res
	6.1.1 Gauss Points
	6.1.2 Result Range Table
	6.1.3 Result
	6.1.4 Results example
	6.1.5 Result group

	6.2 Postprocess mesh format: ProjectName.post.msh
	6.2.1 Mesh example
	6.2.2 Group of meshes

	6.3 Postprocess list file: ProjectName.post.lst
	6.4 Postprocess graphs file: ProjectName.post.grf

	7 TCL AND TK EXTENSION
	7.1 Event procedures
	7.2 GiD_Process function
	7.3 GiD_Info function
	7.3.1 materials
	7.3.2 conditions
	7.3.3 layers
	7.3.4 gendata
	7.3.5 intvdata
	7.3.6 project
	7.3.7 geometry
	7.3.8 mesh
	7.3.9 coordinates
	7.3.10 variables
	7.3.11 localaxes
	7.3.12 ortholimits
	7.3.13 perspectivefactor
	7.3.14 graphcenter
	7.3.15 meshquality
	7.3.16 postprocess
	7.3.17 automatictolerance
	7.3.18 rgbdefaultbackground
	7.3.19 list_entities
	7.3.20 parametric
	7.3.21 check
	7.3.22 listmassproperties
	7.3.23 problemtypepath
	7.3.24 gidversion
	7.3.25 view
	7.3.26 ispointinside

	7.4 Special Tcl commands
	7.4.1 Geometry
	7.4.2 Mesh
	7.4.3 Data
	7.4.4 Results
	7.4.5 Graphs
	7.4.6 OpenGL
	7.4.7 Other

	7.5 HTML help support
	7.5.1 GiDCustomHelp
	7.5.1.1 HelpDirs
	7.5.1.2 Structure of the help content
	7.5.1.3 TocPage
	7.5.1.4 IndexPage

	7.5.2 HelpWindow

	7.6 Managing menus
	7.7 Custom Data Windows
	7.7.1 TkWidget
	7.7.2 Data Windows Behavior

	7.8 GiD version
	7.9 Detailed example

	8 PLUG-IN EXTENSIONS
	8.1 Tcl plug-in
	8.2 GiD dynamic library plug-in
	8.2.1 Introduction
	8.2.2 In GiD
	8.2.3 Developing the plug-in
	8.2.4 Functions provided by GiD
	8.2.5 List of examples

	9 APPENDIX (PRACTICAL EXAMPLES)
	10 INDEX

