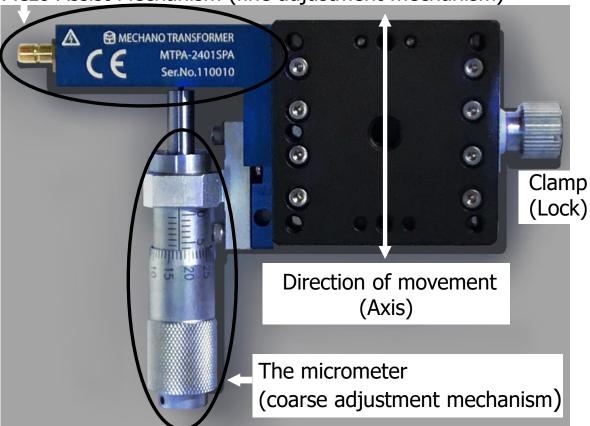


Manual precision positioning stage

What is the "Piezo Assist Stage" · · · P1
Resolution and range of motion · · · P2
How to use · · · P3 ~ P4
Precautions for use · · · P5
Application examples · · · P6
Specifications · · · P7

What is the "Piezo Assist Stage"

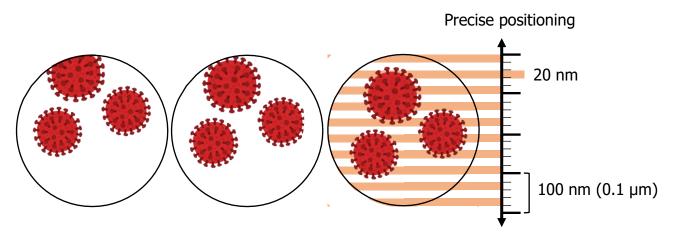

Manually controlled precision positioning stage

- Intuitive operation just turning the knob
- Lightweight and Compact
- High resolution and wide range of motion

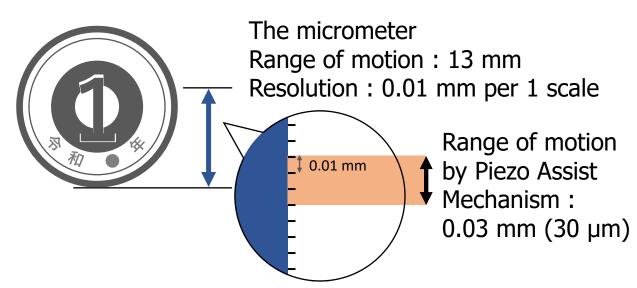
	Resolution	Range of motion*
Piezo Assist Mechanism	20 nm	0.03 mm
The micrometer	0.01 mm	13 mm

*Range of motion of the minimum size model are 0.025 mm and 6 mm

Piezo Assist Mechanism (fine adjustment mechanism)

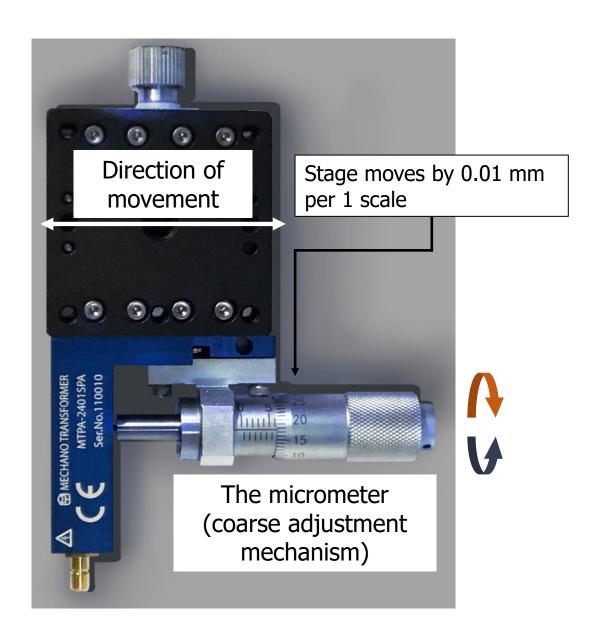


Resolution and range of motion

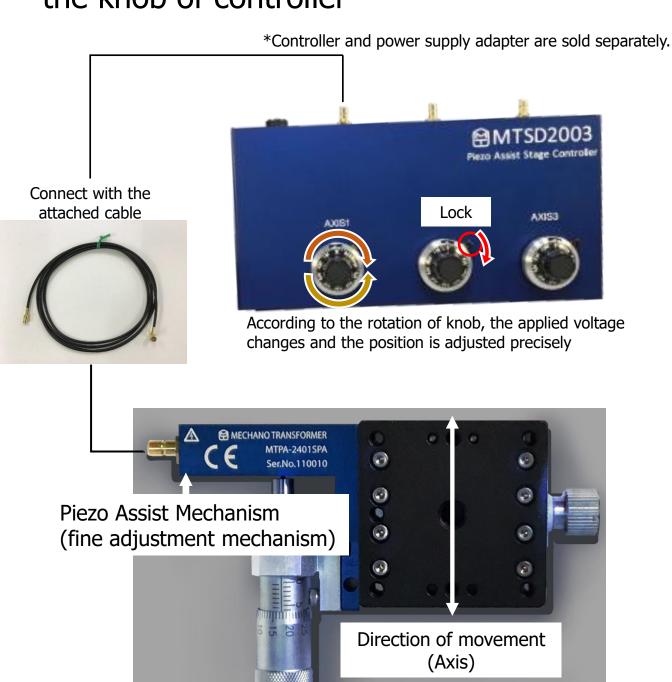

✓ Resolution : 20 nm(nanometre)

Reference example, Observation of microscope: Coronavirus (approx. 50 nm ~ 200 nm in diameter)

✓ Range of motion : max 13 mm(millimetre)

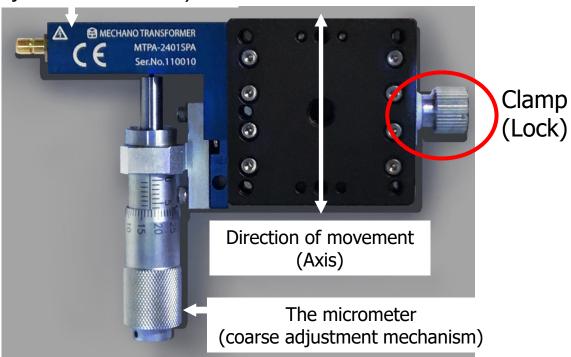

Reference example, 1-yen coin (approx. 20mm in diameter)

How to use 1 The micrometer


Intuitive position control by turning knob

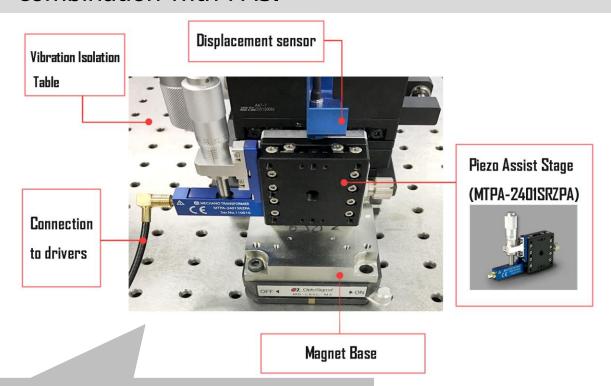
How to use 2 Piezo Assist Mechanism

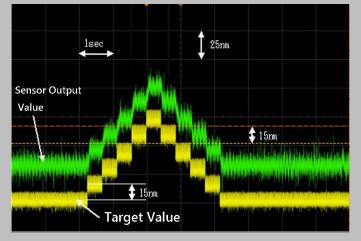
Precise position control by turning the knob of controller*



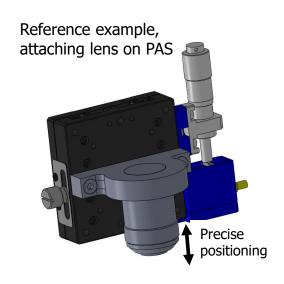
Caution

- Spring is attached to the stage. Since the piezo assist mechanism may be damaged, when releasing the lock by loosening the clamp during setup, take care not to give an impact by the force of the spring by supporting the stage with your hand.
- Since the piezo assist mechanism may be damaged, please make sure to lock the stage when moving/carrying the Piezo Assist Stage.
- When the power of the Piezo Assist controller is being switched OFF, the position adjustment of Piezo Assist Mechanism will also disappear.


Piezo Assist Mechanism (fine adjustment mechanism)



Application examples


As a high-end product, PID control system for less errors can be built by using displacement sensor in combination with PAS.

Accuracy experiment result of PID control system

Achieved stable and high-precision positioning, against the 15nm increment target value.

Specifications

	MTPA-2251 series	MTPA-2401 series	MTPA-2601 series
Table size	25 × 25 mm	40 × 40 mm	60 × 60 mm
Coarse adjustment travel	±3 mm	±6.5 mm	±6.5 mm
Fine adjustment travel	25 μm or more	30 μm or more	30 µm or more
Micrometer Position	Side		
Travel distance per rotation (Micrometer)	0.5 mm		
Minimum resolution (Micrometer)	0.01 mm		
Fine movement (Minimum resolution)	20 nm or less		
Guide	Ball bearing guide		
Primary material	Aluminum		
Surface finish	Black anodized		
Load capacity (excluding Z-axis type)	39.2 N (4.0 kgf) 49 N (5.0 kgf)		
Load capacity of Z-axis type	9.8 N (1.0 kgf)		
Travel accuracy / Straightness	3 μm		
Max. Moment Capacity / Pitch (Z-axis type shows in brackets)	2.0 N·m (1.47 N·m)	2.5 N·m (2.5 N·m)	4.9 N·m (2.5 N·m)
Max. Moment Capacity / Roll (Z-axis type shows in brackets)	1.9 N∙m (1.47 N∙m)	3.0 N·m (2.5 N·m)	4.9 N·m (2.5 N·m)
Max. Moment Capacity / Yaw	1.9 N∙m	2.5 N∙m	4.9 N∙m
Moment Stiffness / Pitch (Z-axis type shows in brackets)	2.5″/N∙cm (6.0″/N∙cm)	0.66″/N∙cm (0.66″/N∙cm)	0.3″/N·cm (0.66″/N·cm)
Moment Stiffness / Roll	2.0″/N∙cm	0.36″/N∙cm	0.25″/N∙cm
Parallelism	30 μm		
Running Parallelism	10 μm		
Mass weight	0.07 kg	0.16 kg	0.25 kg